
Enabling Practical and Performant Sketch-based Network
Telemetry on Programmable Switches

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Hun Namkung

B.S., Computer Science, Korea Advanced Institute of Science and Technology (KAIST)

Carnegie Mellon University
Pittsburgh, PA

Jan 2023

© Hun Namkung, 2023
All rights reserved.

iii

Acknowledgements

I deeply appreciate the privilege that I could have received during a long journey
to achieving my Ph.D. I feel very fortunate to meet two amazing advisors, incredibly
talented colleagues, a wonderful research environment, and great friends here at CMU.
Despite these extraordinary privileges, earning a Ph.D. has been a challenging task for
me. I am proud of myself as I am about to complete this momentous milestone in my
life.

First and foremost, I want to thank my two advisors Peter Steenkiste and Vyas Sekar.
Besides their excellent intellectuality and keen insights, they give me tremendous sup-
port, guidance, and help whenever I need them. I sincerely appreciate their endurance
because they give me endless opportunities to learn and improve. Under their great guid-
ance, I was able to learn the rigorous thought process, the courage that any challenges
can be overcome, and the great passion for finding and solving interesting problems that
can benefit the world.

I would also like to extend my sincere thanks to Minlan Yu and Alan Liu who ac-
cepted my request to join the thesis committee. My entire research is inspired by many
nominal works of Minlan and having her as a thesis committee member is a great honor
for me. Thank you Minlan for your great feedback and comments that can hugely im-
prove my thesis. I also thank Alan, who joined here CMU as a postdoc. Collaboration
with him was truly enjoyable and I appreciate his intellectual and mental support when
I experience the ups and downs during the journey.

I also want to thank my colleague and project collaborator, Daehyeok Kim. Besides
his great ability for doing research, his attitude, commitment, and dedication to research
are big inspirations to me. Whenever I have a hard time, he always gives me great pieces
of advice on how to see things in positive ways and his positive energy helped me a lot.

I thank my fellow graduate students, group members, and friends for their sup-
port: Soojin Moon, Antonis Manousis, Sekar Kulandaivel, Aqsa Kashaf, Yucheng Yin,
Milind Srivastava, Brian Singer, Ao Li, Maria Apostolaki, Arjun Singhvi, Kittipat Apichart-
trisorn, Anup Agarwal, Zhou Cheng, Byungsoo Jeon, Kiwan Maeng, Dohyun Kim, Juy-
ong Kim, Byeongjoo Ahn, Soyong Shin, Haejoon Lee, Jiin Woo, Yaejee Cho. Also, I
want to thank Chad Dougherty for managing and helping with Beluga lab clusters.

Last but not least, I would like to express my deepest appreciation to my wife, Saerom
Park, for her constant love and support throughout my journey to completing this the-
sis. Her unwavering emotional support has been a constant source of motivation and
strength. I am forever grateful for her sacrifices and for being my rock during the tough-
est times. This achievement would not have been possible without her. Thank you from
the bottom of my heart.

The work presented in this thesis has been supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) pro-
gram sponsored by DARPA, and by NSF awards 1565343, 1700521, 2106946, and
2107086.

iv

Thesis Committee Members
Peter Steenkiste (Co-chair)

Vyas Sekar (Co-chair)
Minlan Yu, Harvard University
Zaoxing Liu, Boston University

v

Abstract

Network telemetry plays an essential role in managing network systems. Various
flow-level traffic measurement results (e.g., identifying heavy flows) are needed by net-
work operators to make the right management decisions. In this thesis, we envision
performant and practical flow-level network telemetry that satisfies four requirements:
(1) low resource footprint, (2) high measurement accuracy, (3) high packet processing
speed, and (4) support for diverse measurement results. State-of-the-art techniques of
packet sampling suffer from low measurement accuracy. Instead, an alternative type of
technique called sketching algorithms, or sketches, has received considerable attention
due to their high measurement accuracy and resource efficiency. With recent advances
in programmable network hardware technology, programmable switches have become
a promising platform to program and deploy sketches with Tbps scale of high packet
processing speed.

Although running sketches on a programmable switch is a promising way to achieve
the goal of satisfying the four requirements, there is a gap between sketches and pro-
grammable switches. While there have been continuous improvements on the theo-
retical side of sketching algorithms for better resource-accuracy tradeoffs, much less
attention has been paid to how to efficiently run sketches on actual hardware switches.
Specifically, there are three practical challenges: first, sketch implementations require
excessive resources on the hardware switch, making rich sketch-based telemetry often
infeasible. Second, it takes a long time for developers to implement sketches on pro-
grammable switches because of the complex underlying hardware architecture. Third,
while packets update counters in the switch data plane, the switch control plane also
reads and resets the counters, causing consistency problems that degrade measurement
accuracy significantly.

In this thesis, we present techniques that enable performant and practical sketch-
based network telemetry on programmable switches by proposing optimizations to the
sketch implementations, as well as by providing APIs and the code composition frame-
work that automatically generates optimized sketch codes. In particular, we designed
four novel systems. SketchLib and Sketchovsky propose optimizations for a single
sketch and multiple sketches to reduce the hardware resources in the data plane. Auto-
code composition framework automatically generates optimized data plane sketch code.
CounterFetchLib presents optimizations and APIs for minimizing read and reset delays
in the control plane to address the counter contention problem. We show the feasibil-
ity and effectiveness of optimizations through extensive hands-on evaluations using the
actual hardware. Using auto-code composition framework and APIs, developers can
quickly implement accurate and performant sketches on the programmable switch with-
out worrying about the complexities of the underlying hardware architecture.

Contents

Contents vi

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Sketching algorithms are promising for network telemetry . 2
1.2 Programmable switches are high-performant and flexible . 4
1.3 Sketching algorithms on programmable switches . 6
1.4 Challenges of running sketches on programmable switches . 8
1.5 Thesis overview . 9
1.6 Scope of the thesis . 12
1.7 Outline . 12

2 Related Work: A Taxonomy of Network Telemetry 14
2.1 Packet-level telemetry . 14
2.2 Expressive query language . 15
2.3 Sampling-based approach . 15
2.4 Sketching algorithms on software switch . 16
2.5 Single sketch instance on programmable switch . 16
2.6 Multiple sketch instances on programmable switch (our approach) . 17

3 SketchLib: Optimizing A Single Sketch Instance on Programmable Switches 18
3.1 Motivation: Bottleneck Analysis . 20
3.2 Optimizations . 26
3.3 SketchLib API . 34
3.4 Evaluation . 36
3.5 Related Work . 44
3.6 Summary . 45

4 Sketchovsky: Optimizing Ensembles of Sketch Instances on Programmable Switches 46
4.1 Motivation . 48
4.2 Sketchovsky Overview . 52
4.3 Optimization Building Blocks . 53
4.4 Strategy Finder . 60
4.5 Implementation . 65
4.6 Evaluation . 66
4.7 Discussion . 72
4.8 Summary . 73

5 Auto-code Composition Framework: Automatically Generates Optimized Sketch Data Plane Code 74
5.1 Step 1. Create Sketch P4 Codes . 74
5.2 Step 2. Code Concatenation . 77

vi

CONTENTS vii

5.3 Step 3. Code Rewrite using Strategy . 78

6 CounterFetchLib: Optimizing Sketch Control Plane on Programmable Switches for Accurate Mea-
surement Results 85
6.1 Motivation . 87
6.2 Problem Diagnosis . 89
6.3 Building Blocks and Solution Guidelines . 92
6.4 API calls . 95
6.5 Evaluation . 96
6.6 Related work . 99
6.7 Summary . 100

7 Conclusions 101
7.1 Summary of Contributions . 101
7.2 Lessons Learned . 102
7.3 Future Work . 104

A SketchLib Appendix 107
A.1 Comparison of RMT resource mapper and Tofino compiler . 107

B Sketchovsky Appendix 110
B.1 Supplement to Background . 110
B.2 Supplement to Optimizations . 111
B.3 Supplement to Evaluation . 112

Bibliography 115

List of Tables

1.1 Contribution Summary . 10

2.1 A Taxonomy of Network Telemetry . 14

3.1 Strawman solutions for tracking heavy flowkeys (CP: control plane, DP: data plane). 25
3.2 Applicability of SketchLib on existing sketches. 27
3.3 Conditions for optimization 1 and optimization 2. 29
3.4 The relationships among the bottlenecks, optimizations and API calls. 33
3.5 Sketch parameters for evaluation. 38
3.6 Relative error in cardinality estimation with and without SketchLib. 40
3.7 Individual resource reductions by optimizations. 41
3.8 Comparison of hardware resource utilization. 42
3.9 ARE of heavy hitter detection. 42
3.10 Entropy error (RE), FCM vs. SketchLib-optimized UnivMon. 43
3.11 Cardinality error (RE), FCM vs. SketchLib-optimized UnivMon. 43
3.12 Sketches are infeasible without SketchLib. With SketchLib, there are rooms for additional network func-

tions (L2/L3 forwarding, L4 load balancer, and stateful firewall). 44
3.13 Lines of code simplification (UM stands for UnivMon). 44

4.1 An example of an ensemble of sketch instances. For resource parameters, (R, W) for single-level and (R,
W , level) for multi-level sketching algorithms. 50

4.2 Existing efforts cannot support a general ensemble of measurement tasks with low resource footprint and
high accuracy . 50

4.3 Relationships among workflow steps, optimizations and resource reductions. CP Comp means Control
Plane Computation, and Pipe Stages means Pipeline Stages. 54

4.4 Applicable conditions for five optimization building blocks . 54
4.5 Breakdown of resource reduction by each optimization for the number of sketch instances = 12. 71

5.1 API calls extended from SketchLib and Lib for optimization . 77

6.1 Six delay measurement (ms). 92
6.2 Tradeoffs for solution building blocks in different metrics such as hiding/reducing two bottleneck delays,

epoch size it can support, generality, resource usages. 94
6.3 API calls extended from SketchLib and Lib for optimization . 96
6.4 Total counter value difference / relative counter difference for five sketches and three solutions using

epoch=1s. 97
6.5 Expected errors vs. actual errors using epoch=1s. 97
6.6 The sum of delays after applying solutions in ms (% of reduction compared to unoptimized). 98
6.7 Additional lines of code for implementing solutions. 99

B.1 Eleven sketch algorithms with sketch features and possible configurable parameters. (4-tuple) = (srcIP,
dstIP, srcPort, dstPort). (5-tuple) = (srcIP, dstIP, srcPort, dstPort, proto). 112

B.2 Ensemble Type 1. Same Sketch Algorithm . 113
B.3 Ensemble Type 2. Same Flowkey . 114

viii

LIST OF TABLES ix

B.4 Ensemble Type 3. Same Epoch . 114
B.5 Ensemble Type 4. Random . 114

List of Figures

1.1 Count Sketch has three components - hash computations, multiple counter arrays, and heavy flowkey
storage. 3

1.2 Simplified P4 code of existing multi-level sketches. 4
1.3 RMT switch architecture. 5
1.4 Mapping P4 code to switch resources. 6
1.5 Three challenges for running sketches on programmable switches . 7

3.1 UnivMon entropy estimation error for different configurations. Dotted red line indicates target accuracy. . 21
3.2 Resource bottlenecks for sketch implementations. 24
3.3 Optimization 1 reduces hash calls for count sketch. 28
3.4 Optimization 3 removes the sequential computation dependency and reduces the usage of pipeline stages. 29
3.5 Replacing the sequential if clauses via TCAM. 31
3.6 UnivMon updates only the last level per packet. CS stands for Count-Sketch. 32
3.7 Optimization 5 removes unnecessary allocated SALUs by rewriting P4 code. 32
3.8 hash_consolidate_and_split() . 35
3.9 select_key_and_hash() . 35
3.10 consolidate_memory_update() . 36
3.11 heavy_flowkey_storage() . 37
3.12 Accuracy comparison of sketches between original and optimized sketches across traces. Left: original,

Right: optimized. 39
3.13 Resource consumption before/after optimizations. 39

4.1 Sketchovsky. Opts is optimizations and insts is instances. 47
4.2 Heavy hitters detection of srcIP written in Sonata [52] . 48
4.3 Distinct number of 5-tuple flows written in Sonata [52] . 49
4.4 Existing efforts cannot efficiently run the ensemble . 52
4.5 Hash-Reuse (OHash1) reduces hash calls by reusing hash results. A small box with hseed(flowkey)

indicates one hash call allocation. 54
4.6 Hash-XOR (OHash2) reduces hash calls by using XOR . 55
4.7 SALU-Reuse (OCtr1) reuses counter arrays . 57
4.8 SALU-Merge (OCtr2) reduces SALUs by making SALUs update two counter arrays simultaneously 58
4.9 Overall accuracy evaluation . 67
4.10 Feasibility comparison of ensembles before vs after . 68
4.11 Resource usage comparison before vs after for the number of sketch instances = 12. 69
4.12 Resource reduction result . 70
4.13 Two-step enumeration (TSE) vs greedy heuristic algorithm (GHA) . 72

5.1 Overview of auto-code composition . 75
5.2 Code template library . 75
5.3 Code template example for count-min sketch . 75
5.4 Code template example for PCSA . 76
5.5 Code rewriter uses strategy X∗ to create an optimized P4 code . 78
5.6 [Before] Hash-Reuse (OHash1) and Hash-XOR (OHash2) . 79
5.7 [After] Hash-Reuse (OHash1) to {s1, s2} and Hash-XOR (OHash2) to {{s1, s2}, s3, s4} 79

x

LIST OF FIGURES xi

5.8 [Before] SALU-Reuse (OCtr1) . 81
5.9 [After] SALU-Reuse (OCtr1) to {s1, s2, s3} . 81
5.10 [Before] SALU-Merge (OCtr2) . 82
5.11 [After] SALU-Merge (OCtr2) to {s1, s2, s3} . 82
5.12 [Before] HFS-Reuse (OKey) . 83
5.13 [After] HFS-Reuse (OKey) to {s1, s2, s3, s4} . 84

6.1 Workflow of sketches. 87
6.2 Different counters cause accuracy degradation. 88
6.3 Decomposition of the read and reset delays into control plane and data plane delays at Epochi. 90
6.4 Different input packet sets between software and hardware create the discrepancy problem. 90
6.5 The read and reset delays (ms). 91
6.6 B3: Defer control plane read operation and B4: Use bulk reset API. 94
6.7 Decision tree for selecting solutions. 95
6.8 Total counter value difference for CS. 98
6.9 Average relative error for CS. 99

A.1 RMT resource mapper vs. Tofino compiler: pipeline stages . 108
A.2 RMT resource mapper vs. Tofino compiler: Hash Call . 108
A.3 RMT resource mapper vs. Tofino compiler: SALU . 108
A.4 RMT resource mapper vs. Tofino compiler: SRAM . 109
A.5 RMT resource mapper vs. Tofino compiler: TCAM . 109

Chapter 1

Introduction

Network telemetry is a key enabler for making the right network management decisions. Flow-

level measurement results enable many network management applications, such as traffic engineer-

ing, anomaly detection, load balancing, and resource provisioning [19, 26, 50, 52, 79, 83, 101]. For

example, heavy flow detection on source IP can detect DDoS attacks, and measuring the unique

number of 5-tuple flows can be used to detect SYN flood attacks. The more information opera-

tors can get about the network, the more operators can make the right management and control

decisions [102]. Therefore, it is important to collect diverse measurement results concurrently.

Measurement results are produced by running measurement tasks on network switches.

In this thesis, we envision performant and practical flow-level network telemetry that satisfies

four requirements; (1) low resource footprint, (2) high measurement accuracy, (3) high packet

processing speed, and (4) support for diverse measurement results. Due to limited per-packet

processing time on the network switches (e.g., the scale of ns [28]), packet sampling is the state-

of-the-art technique widely used today to reduce the computation and memory overhead on the

switch for running measurement tasks (sampling 1 in 1000 packets is common [88]). However,

the sampling-based approach severely suffers from accuracy degradation of measurement results

[40, 42, 87]. Moreover, packet sampling still requires linear memory space of O(N), where N is

the number of unique flows in the traffic.

1

CHAPTER 1. INTRODUCTION 2

To overcome these shortcomings, an alternative class of techniques called sketching algorithms

or sketches has attracted extensive attention for running measurement tasks efficiently on network

switches [27, 32, 37, 43, 46, 47, 65, 66, 67, 71, 96]. Sketching algorithms are promising because

they only require only log(N) memory space, and offer a theoretical guarantee of high accuracy for

measurement results by processing every packet. In parallel, a recent innovation in programmable

network hardware switches makes the switch data plane more programmable without sacrificing

the performance of packet processing speed (e.g., the scale of Tbps). This advancement enables

many useful network functions (NFs) on programmable switches such as network address trans-

lators (NAT), load-balancing [79], in-network cache [59], consensus [39, 68], machine learning

(ML) [98], and in-network lock management [104].

Given ever-increasing traffic rates, we observe that the confluence of these two trends, sketching

algorithm and programmable hardware switch, is a promising avenue for providing rich teleme-

try. Sketching algorithms can offer high accuracy and resource efficiency, while programmable

switches are highly performant and flexible. Although this approach seems promising to achieve

the goal of practical and performant flow-level network telemetry, there are still missing pieces

to realize this goal. In this thesis, we explore challenges when we combine those two trends of

running sketching algorithms on programmable switches. Then we propose a principled and vi-

able path to address identified challenges to realize practical and performant sketch-based network

telemetry on programmable switches. In this chapter, we look at the background of sketching al-

gorithms and programmable switches, explore challenges, and see the contributions of this thesis.

1.1 Sketching algorithms are promising for network telemetry

Sketching algorithms or sketches are randomized approximation algorithms that are designed to

compute different observed statistics on a given data stream during every measurement time inter-

val, called epoch. Prior work has shown that sketches [22, 32, 37, 58, 71, 73, 78, 88, 100] offer

better resource-accuracy trade-offs relative to traditional techniques that rely on sampling (e.g.,

NetFlow [35]). Many different sketching algorithms can support diverse statistics for measure-

CHAPTER 1. INTRODUCTION 3

Count-sketch
R counter arrays

Hash
Functions

+1𝑐! 𝑠! 1

-1𝑐" 𝑠" 0

+1𝑐# 𝑠# 1

W=5

R=3

packet

(flowkey, freq)

Heavy
Flowkey
Storage

flowkey

3

5

2

Figure 1.1: Count Sketch has three components - hash computations, multiple counter arrays, and heavy flowkey storage.

ment tasks. For example, count-min sketch (CM) [37] can identify heavy hitters, HyperLogLog

(HLL) [47] can estimate the distinct number of flows, and K-ary sketch (KARY) [65] for heavy

change detection. Recently, more expressive sketching algorithms [22, 58, 71, 100, 106] are de-

veloped to support general estimation capabilities (e.g., UnivMon [71]) and multidimensional an-

alytics (e.g., R-HHH [22]). We classify prior sketching work into two categories:

1. Single-level sketches: As a canonical example, we consider the count sketch (CS) [32] for

heavy hitter detection shown in Figure 1.1. Sketching algorithms follow three common steps.

First, sketching algorithms perform hash computations. As each packet arrives, the count sketch

extracts a flowkey (e.g., 5-tuple) from the packet header. On this key, count sketch computes

two independent hash functions ci and si, corresponding for each row i. Second, using these hash

results, sketching algorithms perform counter updates. The count sketch is a single-level sketching

algorithm, meaning that it maintains 2D counter arrays; R independent counter arrays with the size

of W , thus R ×W counters in total. Then, hash results ci is used to select a specific column, and

si is a 1-bit hash used to determine either to increase or decrease the counter for each row i. Third,

sketching algorithms need to maintain heavy flowkey storage. Sketching algorithm uses threshold

value to compare against flow size estimates to detect and store heavy flowkeys.

2. Multi-level sketches: Multi-level sketches consist of multiple single-level sketches to enable

richer measurement tasks. For instance, R-HHH and UnivMon use multiple count sketches, called

levels (e.g., L levels of R ×W counters). R-HHH supports the detection of hierarchical heavy hit-

ters, which detects heavy hitters based on different lengths of IP prefixes, and UnivMon provides

CHAPTER 1. INTRODUCTION 4

control ingress // R-HHH
{

V = randomInt(1, L);

if (V == 1) {
key = srcIP/32;
apply(CS_level_1,key);

}
if (V == 2) {

key = srcIP/24;
apply(CS_level_2,key);

}
if (V == 3) {

key = srcIP/16;
apply(CS_level_3,key);

}
...

}

((a)) R-HHH

control ingress // UnivMon
{

key = srcIP/32;

apply(CS_level_1, key);
apply(compute_hash_h1, key);

if (h1 == 1) { // 0 or 1
apply(CS_level_2, key);
apply(compute_hash_h2, key);

if (h2 == 1) {
apply(CS_level_3, key);
apply(compute_hash_h3, key);

if (h3 == 1) {
...

}

((b)) UnivMon

Figure 1.2: Simplified P4 code of existing multi-level sketches.

more general estimation capabilities. Other sketches like PCSA, MRAC, and multi-resolution

bitmap (MRB) [43, 46, 66] use multiple 1D-array single-level sketches. Multi-level sketches typi-

cally perform counter updates for a few selected levels for a given flowkey. For instance, as shown

in Figure 1.2(a), R-HHH randomly selects one level of count sketch using a level-specific key (e.g.,

IP prefix) to update per packet. In contrast, UnivMon uses an additional sampling stage using hash

functions that return 0 or 1 to select levels for the update, as shown in Figure 1.2(b).

1.2 Programmable switches are high-performant and flexible

With recent innovations in programmable network hardware technology, programmable switches

have emerged as an attractive platform to deploy various network functions with high packet pro-

cessing speed (e.g., Tbps). Our focus in this thesis is programmable switch hardware based on the

Reconfigurable Match-Action Tables (RMT) paradigm [28]. An example of a canonical commer-

cial realization of this architecture is the Intel Tofino switch chip [9].

Hardware architecture. RMT-based programmable switches have a pipeline of reconfigurable

match-action tables in the data plane, as shown in Figure 1.3. There are constraints in the packet

processing pipeline to meet the line-rate processing requirement. For example, at each stage, a

packet can access a limited amount of compute and memory resources. Each stage has an identical

CHAPTER 1. INTRODUCTION 5

Switch Pipeline (Data Plane)

Pa
rs
er

A
ct

io
n

M
at

ch
 T

ab
le

TCAMSRAM SALU Hash calls
Per-stage resource

A
ct

io
n

M
at

ch
 T

ab
le

A
ct

io
n

M
at

ch
 T

ab
le

A
ct

io
n

M
at

ch
 T

ab
le

D
ep
ar
se
r

Buffer

Ingress pipeline Egress pipeline

Figure 1.3: RMT switch architecture.

design with the same types of resources. To provide flexible match-action operations, each stage

has a match table that matches packet headers to specific values followed by an action unit that

executes a set of simple instructions, depending on the output of the matching unit.

Key hardware resources. We now briefly describe the key hardware resources available in each

pipeline stage. First, there are a number of hardware hash function calls (hash calls) per pipeline

stage. They are used to compute hash functions (e.g., CRC with user-defined polynomials) over

packet header fields or metadata to support operations such as load balancing and table lookups.

Each pipeline stage also has a fixed amount of SRAM that can be used to maintain state (e.g.,

counter arrays). Stateful ALUs (SALUs) are hardware resources that allow one read and one write

operation to the stateful object in SRAM. Each SALU can be used for counter update operations,

such as counter increment or decrement. Finally, each pipeline stage is also equipped with some

amount of ternary content-addressable memory (TCAM) that can be used for wildcard matches

over header fields. Overall, the amount of these limited resources is fixed at hardware design time.

For example, a commercial programmable switch today is equipped with (at most) 10 SALUs, 10

hash calls, 10 MBs of SRAM and TCAM per pipeline stage with a total of 12 pipeline stages [28,

79, 110].1

The data plane can interact with the switch control plane for additional processing. However,

the switch control plane is not designed for real-time processing, e.g., the bandwidth to the control

plane is limited and the response time is high. It is therefore only useful for infrequent operations.
1The other absolute resource numbers are proprietary.

CHAPTER 1. INTRODUCTION 6

parser parse_ipv4 {
extract (ipv4);
return select (latest.protocol)

6: parse_tcp
17: parse_udp;

Default: ingress;
}}

control ingress {// UnivMon
apply (count_sketch_level_1)
apply (compute_hash_1)

// Dependency
if (hash_1==1) {

apply (count_sketch_level_2)
apply (compute_hash_2) }

// Dependency
if (hash_2==1) {

apply (count_sketch_level_3)
apply (compute_hash_2) }

}

control egress {
mirroring ()
routing ()

}

…
…

Ingress pipeline

Egress pipeline

Stage 1

…

Programmable
Parser

Match-Action
Tables

Match-Action
Tables

Match-Action
Tables…

Stage 2

Stage 3

Deparser

…

SRAM
&TCAM

SALU

Registers,
hash calls,
etc.

Shared
Metadata

Figure 1.4: Mapping P4 code to switch resources.

1.3 Sketching algorithms on programmable switches

Programmable switches have become a promising platform for running sketches. As network

traffic patterns change over time, network operators want the flexibility to run different sets of

measurement tasks. Unlike traditional fixed-function hardware devices, network operators can

program and deploy any existing or new sketching algorithms, at any time they want, with pro-

grammable switches. To support one measurement task (e.g., heavy hitter detection on source IP)

on programmable switches, a sketch instance should be initiated based on a sketching algorithm

with configuration on parameters (e.g., flowkey definition such as source IP and resource alloca-

tions for R and W). As one sketch instance can often support one measurement task, running mul-

tiple sketch instances concurrently on the programmable switch can support diverse measurement

results. Sketch implementations for sketch instances are partitioned across the data and control

plane.

1.3.1 Sketching Algorithms on Switch Data Plane

Sketch data plane implementations are developed to make packets to counter arrays as in Fig-

ure 1.5. Data plane programs for RMT switches are written in the P4 language [29] as illustrated

in Figure 1.4. At a high level, a P4 program consists of the following components. First, a packet

CHAPTER 1. INTRODUCTION 7

Programmable Switch

read reset
Sketch

Developers

C3. writing code

Control Plane
Sketch Control

Plane Code

Sketch Data
Plane Code

Packets Data Plane

Counter Arrays

update

C1. limited resources

C2. counter contention

Figure 1.5: Three challenges for running sketches on programmable switches

parser parses the header fields of each packet and stores the extracted fields in metadata. Second, a

series of match-action operations are executed based on the match-action abstraction, e.g., match-

ing a specific header field and updating a register as an action. The action is specified by special

functions that map operations to hardware resources, e.g., functions for hashing and accessing

memory. Finally, the P4 program defines the packet forwarding behaviors, e.g., routing a packet

to an egress port, recirculating it in the pipeline, or forwarding it to the switch control plane.

The P4 compiler maps the P4 program into a static pipeline realization. The compiler analyzes

the dependencies between operations in the P4 program to map the program onto the pipeline

stages. For instance, given the code snippet in Figure 1.4, the resolution of each if-clause de-

pends on the previous hash result. Because of this dependency, two consecutive if-clauses cannot

run in parallel, so the compiler has to map them to different pipeline stages in order for them to

run sequentially. If a mapping of a whole program is possible considering hardware constraints,

packets are guaranteed to be processed at line rate; otherwise, compilation fails. Note that vendor-

specific compiler backends are typically proprietary.

1.3.2 Sketching Algorithms on Switch Control Plane

Figure 1.5 shows the common workflow for deploying sketching algorithms on the control plane of

programmable switches. Traffic is chunked into time intervals or epochs. On the data plane, sketch

implementations maintain counter arrays that are updated by processing packets, as we discussed

CHAPTER 1. INTRODUCTION 8

in the previous section. At the end of every epoch, the control plane periodically reads the counter

arrays and resets them. Essentially, the counter arrays are shared state between the data plane and

the control plane. Fetched counters in the control plane are used to compute measurement results.

1.4 Challenges of running sketches on programmable switches

While running multiple sketch instances on programmable switches seems like a promising way to

achieve all four requirements, we find that there are still many missing pieces to enable sketches on

programmable switches. Even though there have been continuous improvements on the theoretical

side of sketching algorithms for better resource-accuracy trade-offs, little exploration has gone into

figuring out the feasibility of sketches on programmable switches. It turns out that deploying such

sketches on programmable switches leads to many practical problems, such as significant overhead

on the data plane hardware resources, as well as a counter contention problem between the data

plane and control plane. As a result, sketch implementations are often infeasible due to excessive

resource usage on the data plane, and they suffer from significant accuracy degradation due to

miscounting measurement information in the control plane. Further, sketch developers must put

in a lot of effort to learn underlying hardware architecture, in order for them to write codes for

data and control plane implementations. We articulate three main challenges to run sketches on

programmable switches (Figure 1.5):

Challenge 1: Limited data plane resources. To maintain a high packet processing speed of Tbps,

the per-packet processing time is limited, and there are only a small number of hardware resources

on programmable switches (e.g., hardware resources for hash computations and for memory ac-

cesses to counter arrays). However, running sketch instances needs a lot more hardware resources

than current programmable switches can offer. A single sketch instance is often infeasible due to

the lack of hardware resources. Thus, it is even more challenging to run multiple sketch instances

concurrently.

Challenge 2: Contention on counters between data and control plane. To compute measure-

ment results, the switch control plane must periodically read and reset counters. However, since

CHAPTER 1. INTRODUCTION 9

there is no provided mechanism to preserve data consistency for counters, the data contention

problem occurs when the data plane updates counters while the control plane tries to read and

reset the same counters. As a result, retrieved counters in the control plane become inaccurate and

increase the measurement error significantly (by up to 94x).

Challenge 3: Long development time. Learning the underlying architecture of programmable

switches and attendant programming languages used for writing sketch implementations is a chal-

lenging task that takes a lot of time. To make it even worse, writing resource-efficient and opti-

mized code for both the data plane and control plane needs even more training time, potentially

amounting to multiple years of experience and effort.

1.5 Thesis overview

1.5.1 High-level approach

We address these challenges by (1) performing systematic bottleneck analysis, (2) proposing op-

timizations to the data and control plane sketch implementations based on the bottleneck analysis

result, and (3) providing APIs and auto-code composition framework to reduce the developer’s

manual effort. Table 1.1 summarizes the high-level approach of this thesis to address the three

challenges.

• To address the first challenge (C1) of limited resources in the data plane, we first identify data

plane resource bottlenecks on programmable switches for running sketch instances. Based on

this result, we propose both per-sketch and cross-sketch optimizations. Per-sketch optimiza-

tions reduce resource overhead within individual sketch instances (chapter 3). In opposition,

cross-sketch optimizations reduce resource overhead across a set of sketch instances (chap-

ter 4).

• To address the second challenge (C2) of the counter contention problem, we minimize exe-

cution time for read and reset operations to minimize error. To achieve these optimizations,

CHAPTER 1. INTRODUCTION 10

Contributions Plane C1. Limited
Resources

C2. Counter
Contention

C3. Writing
Code

SketchLib (chapter 3)
Data Plane

� �
Sketchovsky (chapter 4) �
Auto-code Composition (chapter 5) �
CounterFetchLib (chapter 6) Control Plane � �

Table 1.1: Contribution Summary

we decompose read and reset delays into smaller chunks and identify which of them are bot-

tleneck delays. This bottleneck analysis result leads us to propose optimizations that reduce

the total delay significantly (chapter 6).

• To address the third challenge of long development time (C3), we provide APIs for sketch

developers to easily apply all of the proposed optimizations (§3.4, §6.4). Moreover, we build

an auto-composition framework that automatically generates optimized data plane code for

an ensemble of sketch instances (chapter 5).

1.5.2 Thesis Statement

We enable performant and practical sketch-based network telemetry on programmable switches

by proposing optimizations to the sketch implementations and by providing APIs and code compo-

sition framework that automatically generates optimized codes.

1.5.3 Thesis contributions summary

We have four novel systems to tackle three challenges to achieve the goal of deploying multiple

sketch instances on programmable switches concurrently.

SketchLib: Optimizing single sketch instance on programmable switches (chapter 3). Sketch-

Lib identifies four resource bottlenecks that run sketching algorithms on programmable switches.

Then, it proposes six per-sketch optimizations that enable a single sketch instance on the switch

data plane. Finally, SketchLib provides APIs to apply these optimizations. In SketchLib, we

demonstrate:

CHAPTER 1. INTRODUCTION 11

• Optimizations reduce bottleneck resource usage by up to 9-96% so that many previously

infeasible sketches become feasible on programmable switches while the accuracy is not

affected by optimizations.

• We show that optimizations are applicable to a broad range of 15 sketching algorithms [22,

32, 37, 38, 41, 43, 46, 47, 58, 65, 66, 67, 71, 89, 92]. Using API reduces lines of code from

201-471 to 91-131.

Sketchovsky: Optimizing ensembles of sketch instances on programmable switches (chap-

ter 4). While SketchLib enables a single sketch instance by per-sketch optimizations, Sketchovsky

enables an ensemble of sketch instances by proposing cross-sketch optimizations. We identify five

cross-sketch optimizations, and the key insight is that there are many opportunities to reuse hard-

ware resources across sketch instances. Sketchovsky also proposes greedy heuristic algorithms to

find the best way to use optimizations. In Sketchovsky, we demonstrate:

• Sketchovsky causes up to 18 sketch instances to become feasible by reducing bottleneck

resource usage by up to 45%.

• Sketchovsky always maintains, and sometimes even improves, accuracy.

Auto-code Composition Framework: Automatically generates optimized sketch data plane

code (chapter 5). An auto-code composition framework automatically writes optimized sketch

data plane code for developers. We provide code templates for each sketching algorithm using

SketchLib. For a single sketch instance, developers can configure flowkeys and resource parame-

ters using code templates to build optimized code. For an ensemble of sketch instances, auto-code

composition creates the optimized code by applying the best strategy to use optimizations from

Sketchovsky using code rewrites.

CounterFetchLib: Optimizing sketch control plane on programmable switches for accurate

measurement results (chapter 6). CounterFetchLib decomposes counter read and reset delays

into smaller chunks and identifies bottleneck delays. Based on this analysis, we propose an opti-

mization characterized by deferring a part of the read operation after the reset operation, where the

CHAPTER 1. INTRODUCTION 12

specific fraction of the read operation is not in the critical path to compute the measurement re-

sults. Another optimization additionally leverages bulk reset operation. Finally, CounterFetchLib

provides APIs for developers to apply these optimizations. In CounterFetchLib, we demonstrate:

• These optimizations reduce delays by 95%.

• The error induced by the delay is reduced by 97%.

To summarize, SketchLib and Sketchovsky tackle the first challenge of limited data plane

hardware resources by proposing per-sketch and cross-sketch optimizations. CounterFetchLib

addresses the second challenge of counter contention by optimizing the control plane. All three

works address the third challenge of long development time by providing APIs.

1.6 Scope of the thesis

This thesis focuses on programmable switch hardware based on the Reconfigurable Match-Action

Tables (RMT) paradigm [28]. Specifically, we explore the feasibility and effectiveness of proposed

optimizations and APIs using Intel Tofino switch chip [9], a canonical commercial realization of

RMT architecture. Based on public documentation and conversations with vendors, we believe that

while other programmable switches (e.g., Broadcom Trident [10]) may have different hardware

limitations and resource allocation constraints, the architectural bottlenecks for sketches are likely

similar. We leave it as future work to extend this thesis to other programmable switches and other

hardware targets.

1.7 Outline

The rest of this thesis is organized as follows: chapter 2 discusses the taxonomy of network teleme-

try and prior work in this space. In chapter 3, we present SketchLib, a library of API calls of per-

sketch optimizations for data plane resources to enable a single sketch instance. In chapter 4, we

introduce Sketchovsky, which proposes many cross-sketch optimizations that enable ensembles

CHAPTER 1. INTRODUCTION 13

of sketch instances. Specifically, this chapter compiles optimization building blocks and greedy

heuristic algorithms, in order to find the best strategy for using them. In chapter 5, we propose

an auto-code composition framework that translates those strategies into optimized code. Next,

chapter 6 discusses how to solve the counter contention problem by optimizing read and reset

operations in the sketch control plane implementations. Finally, chapter 7 summarizes lessons

learned, future research directions, and our conclusion.

Chapter 2

Related Work: A Taxonomy of Network Telemetry

We present a taxonomy of network telemetry in Table 2.1 to explain why existing approaches do

not satisfy all four requirements of (1) low resource footprint, (2) high measurement accuracy, (3)

high packet processing speed, and (4) support for diverse measurement results. This taxonomy

helps us put our contributions in context; approaches that are taken in this thesis are emphasized

by bold text.

Network
Telemetry

Packet-level NetSight [53], EverFlow [111], dShark [24], INT [101]

Flow-level

Expressive Query
Language Marple [83], Sonata [52], Newton [110]

Sampling-based NetFlow [35], sFlow [95]

Sketch-based

Software Switch NitroSketch [73], SketchVisor [57]

Programmable
Switch

Single
Sketch

UnivMon [71], R-HHH [22], FCM [89]
ElasticSketch [100], SketchLearn [58]

CocoSketch [106]
Multiple Sketches (Our Approach)

Table 2.1: A Taxonomy of Network Telemetry

2.1 Packet-level telemetry

Packet-level telemetry is useful to diagnose network issues such as route error, route loop, or

congestion link detection. The telemetry result is measured by tracking individual packets by

in-network packet dump [24, 53, 111] or appending route information to packet header [24]. Ev-

erFlow [111] enables efficient in-network packet capture by tracking only a portion of traffic, and

dShark [101] provides a programming model to support packet-level telemetry queries in a dis-

14

CHAPTER 2. RELATED WORK: A TAXONOMY OF NETWORK TELEMETRY 15

tributed manner based on packet capture fed by EverFlow. In-band network telemetry (INT) [24]

makes switches attach information to each packet, such as switch ID and queue status, which can

be collected at the endpoint where the packet arrives. Although these packet-level telemetry results

help debug network issues, they cannot provide useful flow-level measurement results.

2.2 Expressive query language

Expressive query languages allow network operators to run diverse flow-level measurement tasks

on hardware switches. Marple [83] proposes a programming language model for flow-level queries

with basic primitives such as filter, map, groupby, and zip operations, along with novel design con-

tributions for hardware switches to support these operations efficiently. Sonata [52] takes a further

step to run this expressive query language even more efficiently by partitioning the computation of

queries into the hardware switch data plane and stream processor running on nearby CPU servers.

Newton [110] contributed to the dynamically changing queries to run on the programmable switch.

Although these expressive query languages help generate diverse flow-level measurement results,

they are based on precise measurement techniques that aim to produce 100% accurate results. Due

to this reason, this approach requires too many hardware resources, and it is often not feasible

for today’s network switches. Thus, this approach violates the first requirement, (1) low resource

footprint.

2.3 Sampling-based approach

Because the precise measurement approach incurs high resource overhead, the approximation-

based approach is often used instead. Specifically, packet sampling is a state-of-the-art technique

that processes only sampled packets on the network traffic. NetFlow [35] samples packets by a

configurable ratio (e.g., sample 1 packet out of 1000) and maintains an active working set of flow

information in a hash table in the data plane. On the other hand, sFlow [95] samples packets and

mirror them to a separate collector where flow information is maintained. While packet sampling

CHAPTER 2. RELATED WORK: A TAXONOMY OF NETWORK TELEMETRY 16

effectively reduces resource overhead, sampling-based approaches suffer from low accuracy [40,

42, 87]. Thus, this approach does not satisfy the second requirement, (2) high accuracy.

2.4 Sketching algorithms on software switch

Due to the inaccuracy problem of packet sampling, an alternative class of techniques called sketch-

ing algorithms or sketches attracted considerable attention due to their resource efficiency and

high accuracy. As software packet processing is an essential pillar of modern data center net-

works, several recent works optimize sketching algorithms to run on software switches efficiently.

SketchVisor [73] reduces CPU overhead by activating the fast path under high traffic load with

slight accuracy degradations. NitroSketch [73] takes a more fundamental approach by leveraging

geometric sampling for updating counter arrays to reduce CPU overhead without sacrificing accu-

racy. While these innovations for running sketches on software switches continue to be important,

software switches cannot keep up with hardware switches’ fast processing speed. As a result,

running sketches on software switches does not satisfy our third requirement of (3) high packet

processing speed.

2.5 Single sketch instance on programmable switch

Instead of a software switch, a programmable hardware switch is more promising for running

sketches, as it can process Tbps scale of high packet processing speed with the flexibility to pro-

gram and run any sketching algorithms. However, previous work only focuses on running a single

sketch instance, and this approach is fundamentally limited in terms of the coverage of measure-

ment results. Researchers focused on developing new and general sketching algorithms to cover

multiple measurement results. [22, 58, 71, 89, 100, 106]. For example, by running R-HHH [22] or

CocoSketch [106], heavy hitter detection on multiple flowkeys is supported. By running UnivMon

[71], ElasticSketch [100], SketchLearn [58], or FCM [89] on a predefined flowkey (e.g., source

IP), then multiple statistics—such as identifying heavy hitters, entropy, and cardinality—can be

CHAPTER 2. RELATED WORK: A TAXONOMY OF NETWORK TELEMETRY 17

measured simultaneously. Despite these achievements, developing a new sketching algorithm

to support both multi-flowkey and multi-statistics measurement results and making it hardware-

friendly is challenging. Thus, running a single sketch instance cannot satisfy the final requirement,

(4) support for diverse measurement results.

2.6 Multiple sketch instances on programmable switch (our approach)

This thesis presents a systematic approach to run multiple sketch instances concurrently on pro-

grammable switches as it has the potential to meet all four requirements: (1) high accuracy, (2) low

resource footprint, (3) high packet processing speed, and (4) diverse measurement results. Instead

of packet sampling, sketching algorithms can provide both accuracy and low resource usage. Pro-

grammable hardware switches are more effective than software switches at achieving high packet

processing speed. By running multiple sketch instances, we can achieve the requirement of diverse

measurement results.

This thesis focuses on a systematic approach for enabling efficient sketch realizations on pro-

grammable switches via optimizations and APIs, but it does not explore a theoretical approach to

developing new and more general sketching algorithms. We argue that bridging the gap between

sketches and programmable switches by this systematic approach is an effective and timely way

to realize performant, rich, and practical sketch-based network telemetry, because we can take ad-

vantage of many already-existing sketching algorithms [36, 54, 103]. However, developing new

sketching algorithms continues to be valuable and important. Our systematic approach is orthog-

onal but also complementary to this theoretical approach, as systematic optimizations can inspire

new general sketching algorithms to be compatible with programmable switches.

Chapter 3

SketchLib: Optimizing A Single Sketch Instance on

Programmable Switches

Implementing a single sketch instance on programmable switches remains an open challenge. For

example, off-the-shelf sketch implementations often cannot run with the desired accuracy levels

due to insufficient hardware resources (see §3.1). Indeed, some proposed sketches (e.g., [71])

are infeasible as implemented, and even those that are feasible consume too many significant

resources.

Even if more hardware resources may become available, so too do operators’ demands of in-

switch applications, and the resources consumed by sketches will be unavailable for other switch

functions. Thus, it is essential to explore if, and how, we can efficiently realize a single sketch

instance on programmable switches. Specifically, we focus on programmable hardware switches

based on the Reconfigurable Match-Action Tables (RMT) paradigm [9]. We identify and analyze

four key resource bottlenecks for realizing sketches on RMT switch hardware:

• Hash calls: Sketches make a number of counter updates based on independent hash functions,

requiring a large number of hash calls in hardware.

• Memory accesses: Sketches need to access on-chip memory (e.g., SRAM) for counter up-

dates, but the number of memory accesses per packet is limited in hardware.

18

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 19

• Pipeline stages: Some sketches need to select a subset of counter arrays for counter up-

dates [43, 66, 71]. However, implementing this naively can cause a long chain of sequential

computation dependencies, which stresses the limited number of switch pipeline stages.

• Resources for tracking heavy flowkeys: Some sketches need to keep track of the flowkeys

identifying the heavy hitters (e.g., 5-tuple, source IP, or destination IP) [22, 32, 37, 65, 71].

Common structures such as priority queues or heaps used in software are not supported on

programmable switches, and existing solutions entail undesirable tradeoffs that affect miss

rate, data plane memory, and control plane bandwidth.

Having identified these bottlenecks, our contribution is a careful synthesis of known and novel

optimizations into a practical library for enabling efficient sketch implementations atop the RMT

architecture. While some of these build on prior work in optimizing sketching for other targets

such as software switches, FPGAs, and embedded platforms [73, 97, 99, 103], our main contri-

bution is in realizing feasible and effective optimizations based on our bottleneck analysis and

translating them into the switch hardware setting. For example, to reduce the number of hash

calls, we identify opportunities to consolidate and reuse hash results across multiple counter up-

dates [45, 64]. Similarly, we identify an opportunity to reduce the pipeline stages by eliminating

code dependencies based on longest prefix matching using TCAM [103]. We reduce the mem-

ory accesses by refactoring sketch algorithms and removing unnecessary memory accesses. We

also develop practical flowkey tracking mechanisms that are feasible in hardware. Note that all

optimizations preserve correctness while reducing the resource footprint.

To make it easy for sketch developers to benefit from these optimizations with minimal effort,

we implement SketchLib, an easy-to-use API using the P4 language [29]. These optimizations

can be applied to a broad spectrum of classical sketches (e.g., [32, 37, 65]) and recent innovations

(e.g., [22, 71]). We qualitatively evaluate the suitability of SketchLib for 19 published sketches and

observe that 15 of them can be expressed and can benefit from one or more of our optimizations.

We acknowledge that not all optimizations are applicable for every sketch, and we envision sketch

developers using our API to adopt the relevant optimizations.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 20

We quantitatively evaluate the utility of SketchLib in improving 7 of the 15 applicable sketches

covering a diverse set of target measurement tasks: Count Sketch (CS) [32], PCSA [46], MRAC [66],

Multi-resolution Bitmap [43], Hierarchical Heavy Hitters [22], and UnivMon [71]. Our evaluation

using a range of packet traces empirically confirms that our optimizations provide similar accu-

racy (≤ 1.9%) with substantially (up to 96%) reduced resource usage. Furthermore, some complex

sketches (e.g., UnivMon) that were previously infeasible on current hardware become feasible.

Contributions and Roadmap. To summarize, we make the following contributions:

● Bottleneck Analysis (§3.1): We identified four key resource bottlenecks for sketch implemen-

tations on the programmable switch data plane.

● Optimizations (§3.2): We identify and synthesize practical correctness-preserving optimiza-

tions to address the bottlenecks for sketches on the hardware switch.

● API Implementation (§3.3): We design a convenient API to make our optimizations easy to

use for developers who implement sketches on RMT programmable switches. We verified sig-

nificant resource benefits on a broad range of sketching algorithms. 1

3.1 Motivation: Bottleneck Analysis

In this section, we consider three exemplar sketches (single-level: count sketch; multi-level:

R-HHH and UnivMon) to quantify the resource bottlenecks of sketch implementations on pro-

grammable switches. We implement them in P4 based on the logic described in prior work [32,

43, 46, 47, 66, 71] similar to the structure presented in Figure 1.2.

3.1.1 Methodology and Setup

Configuring sketches. Running sketches entails picking parameters (e.g., the count (R) and

size (W) of counter arrays) to trade-off the accuracy vs. resource use. We envision an operator

configuring the sketches with some target accuracy goal, e.g., the median error should be less
1SketchLib is publicly available at https://github.com/SketchLib.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 21

Row=3 Row=4 Row=5 Row=6
0
2
4
6
8

10
12
14
16
18
20
22

R
el

at
iv

e
E

rr
or

(%
)

UnivMon Entropy

Width=1024

Width=2048

Width=4096

Figure 3.1: UnivMon entropy estimation error for different configurations. Dotted red line indicates target accuracy.

than 5%. Operators can use trace-driven analysis to pick reasonable operating regimes for these

parameters.

As an example, Figure 3.1 illustrates this trade-off for entropy estimation using UnivMon. The

figure shows the estimation accuracy using an hour-long inter-ISP packet trace captured on a OC-

192 link [1] with different parameters R and W for count sketches and L = 16 levels. We see

that the error decreases as we increase the number of rows (R) and width (W) for count sketches.

Naturally, the higher accuracy configurations incur more hardware resources. For our bottleneck

analysis, we target an accuracy of under 5% median error (dotted red line in Figure 3.1), which

we achieve with minimal resource use with the configuration R = 3 and W = 2048. We repeat the

analysis for count sketch and R-HHH and consider a similar operating regime for these sketches

as well.

Estimating resource footprint. For a given set of sketch parameters, the most direct way to mea-

sure the required hardware resources is to compile the code and run it on the hardware. However,

this limits our analysis to currently available platforms. In order to support “what if” analysis

for hardware with different resources (e.g., more pipeline stages), we extended an existing open

source tool for mapping P4 programs to the RMT hardware, which we will refer to as RMT re-

source mapper [60]. Specifically, we address three issues to extend RMT resource mapper for our

analysis:

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 22

● Inputs: The input to Tofino compiler is P4-16 code with some hardware-specific primitives

whereas RMT resource mapper accepts only P4-14 code [14]. Thus, we first convert our P4-16

code into equivalent P4-14 code. Then, we convert Tofino-specific primitives to equivalent ones

specified in the language specification. For instance, we replace Tofino-specific primitives for

accessing registers with register_read and register_write.

● Resources: First, RMT resource mapper does not model hash calls and SALUs in their original

design. Thus, we extend RMT resource mapper to model hash calls and SALUs and added

the corresponding optimization constraints for assignment of these new resources. Second, we

observed that RMT resource mapper assigns memory even for tables without any entries and

action data. To fix this disconnect, we decouple the memory/table assignment.

● Objective: RMT resource mapper supports different optimization objectives: minimizing la-

tency, power, or pipeline stages. The objective of minimizing pipeline stages is the most suitable

because it gives resource mappings that are closest to those generated by the Tofino compiler.

With these fixes in place, we validate our extensions by comparing the resource usages between

RMT resource mapper and Tofino compiler for a wide range of sketches and configurations, for

the cases that are feasible on current hardware. Based on the measurement results, we conclude

that our modified RMT resource mapper is a good proxy of Tofino compiler, as it captures the

relevant resource constraints, and its resource allocation results are close to that of Tofino compiler

(see §A.1 for more details).

3.1.2 Identified Bottlenecks

Using the RMT resource mapper, we measure the usage of each type of resource based on the

output of the compiler for three sketches: Count Sketch, R-HHH, and UnivMon. For the purpose

of bottleneck analysis, we use a base configuration of: W = 2048, R = 3, and L = 16 for UnivMon

and L = 25 for R-HHH [22], which provides an error of up to 15% when processing packets from

an inter-ISP packet trace [1]. We choose the value for L from the original papers [22, 71].

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 23

Figure 3.2 illustrates how the use of four bottleneck resources depends on key sketch param-

eters. While the amount of available hardware resources can differ across hardware vendors and

versions, we see that resource usage increases rapidly as we need more counters to meet higher

accuracy requirements. While we cannot report exact resource usages due to proprietary reasons,

we note that UnivMon and R-HHH are infeasible today on the hardware for many configurations.

Perhaps more importantly, switches must also support tasks other than sketch-based telemetry

(e.g., [59, 79]). Thus, it is critical to reduce the resource footprint of the sketches to ensure they

can co-exist with other switch functions.

B1. Hash calls: Recall that count sketch needs 2R hash calls per packet, matching the results in

Figure 3.2(a). UnivMon and R-HHH execute one count sketch per level L. As a result, R-HHH

needs L ⋅2R hash calls. UnivMon needs to compute an additional L 1-bit hash calls in its sampling

stage, adding up to L ⋅ (2R + 1) hash calls.

At first glance, it may seem that the number of hash calls is not a bottleneck as these are called

on demand per packet. While this is true in a software setting, where only the required calls are

performed on demand, hashing on hardware is different. On a hardware switch, all hash calls

appearing in the code need to be pre-allocated, since execution at line rate must be guaranteed for

all possible execution paths. This increases resource requirements, even if hash calls need not be

executed. For example, even though UnivMon and R-HHH (Figure 1.2) may not update all levels

of count sketches for all packets, all hash resources must be pre-allocated.

B2. Memory accesses: Count Sketch maintainsR counter arrays and for each row it must read one

counter from memory and update its value. This means that count sketch needs R counter updates

per packet, requiring R Stateful ALUs (SALUs) as shown in Figure 3.2(b). When the compiler

compiles the P4 code of UnivMon and R-HHH in Figure 1.2, it allocates separate memory regions

and SALUs for each level of count sketches, thus SALU requirements are proportional to the

number of levels L. Since we need R memory processes per packet for the count sketch at each

level, we need a total L⋅R SALUs for R-HHH and UnivMon. This makes memory access hardware

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 24

1 2 3 4 5
Number of counter rows (R)

0

50

100

150

200

250

H
as

h
C

al
ls

((a)) Hash Calls

1 2 3 4 5
Number of counter rows (R)

0

50

100

150

200

250

S
A

L
U

s

RHHH

UnivMon

count-sketch

((b)) SALUs

1K 2K 3K 4K 5K
Number of heavy flowkeys

10−1

100

101

B
lo

om
fil

te
r

S
pa

ce
(M

B
)

Miss rate 10 ˆ (-9) %

Miss rate 10 ˆ (-6) %

Miss rate 10 ˆ (-3) %

((c)) Flowkey Space

4 8 12 16 20
Number of levels (L)

2

4

6

8

P
ip

el
in

e
S

ta
ge

s
(N

or
m

al
iz

ed
) R-HHH

UnivMon

((d)) Pipeline Stages

Figure 3.2: Resource bottlenecks for sketch implementations.

(SALU) a bottleneck (Figure 3.2(b)). Similar to hash resources, SALUs need to be pre-allocated

at compile time, even if they may remain unused.

B3. Resources for tracking heavy flowkeys: Many sketches need to track heavy flowkeys to

enable downstream analytics tasks. Typically, these sketches store heavy flowkeys in a separate

data structure (e.g., heap or priority queue) [32, 71].

In practice, however, the exact details of if/how this can be realized on switch hardware are

unclear. Specifically, a heap or priority queue, while feasible in software switches, is too complex

to be implemented on the programmable hardware switch. Alternatively, the data plane can relay

all flowkeys to the switch control processor or record all flowkeys in the data plane. However,

these are not feasible: e.g., bandwidth between the data plane and the control plane is limited, and

data plane memory is also limited. Some sketch constructions store heavy flowkeys together with

the counters [23, 58, 88]. However, these are infeasible at line-rate on today’s RMT switches.2

To reduce the memory use, prior work proposed an optimized baseline: when a packet arrives,

it checks whether the frequency of a flowkey has exceeded the threshold by querying the sketch

counter, and if so, it reports the key to the control plane [59, 71, 72]. Unfortunately, this still
2Specifically, HashPipe [88] cannot be directly implemented on RMT architecture due to complex memory access patterns (see [23] for more

details). Precision [23] requires recirculation, which means some packets must go through entire pipeline again.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 25

Miss rate CP
bandwidth

DP
resource

Recored every key in the DP Zero Low Infeasible

Report every key to the CP Zero Infeasible Low

Report heavy keys to the CP Zero Infeasible Low

Report non-duplicate heavy keys Low Low High

Table 3.1: Strawman solutions for tracking heavy flowkeys (CP: control plane, DP: data plane).

presents a problem, as “heavy” flowkeys may be reported redundantly every time a packet arrives

and needs more control plane bandwidth. To avoid duplicate reporting to the control plane, we

could use a Bloom filter to check if a heavy key has already been reported [59]. However, we need

to configure the Bloom filter (i.e., bitmap size and number of hash functions) to have especially

low false positives, since a false positive in the Bloom filter for the duplicate check is a potential

miss of a heavy flowkey. Figure 3.2(c) confirms this trade-off; we can configure the Bloom filter

depending on the target miss rate, and we find the memory footprint is correspondingly higher (We

use 3 hash functions for Figure 3.2(c)). Although using a Bloom filter might be a valid approach

if we allow some missing heavy flowkeys, we argue a design that targets a zero miss rate is more

desirable.

We implement four possible strawman solutions to report heavy flowkeys and run microbench-

marks on a Tofino hardware switch, to understand a trade-off between the accuracy and the re-

source consumption. Table 3.1 summarizes our analysis and shows that we have an undesirable

trade-off between the miss rate of heavy flowkeys, data plane resources (memory for keys and hash

calls for Bloom filters), and the control plane bandwidth (for reporting keys).

B4. Pipeline stages: So far, we have implicitly assumed that the switch has a single pool of

resources (i.e., SRAM/TCAM, SALUs, and hash calls) that can be allocated from the switch to the

sketch operations. In reality, the resources are partitioned across the pipeline stages. This impacts

resource use in two ways. First, before an operation can be assigned to a stage, all required

resources need to be available on that stage. If that is not the case, it needs to be moved to the next

stage. Second, if there is a dependency between two operations, e.g., O1 → O2 in the code, then

O2 must be placed on a later stage than O1, even if there are unused resources available on stages

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 26

earlier in the pipeline. For example, the sequential if clauses used by UnivMon (Figure 1.4)

create sequential dependencies between the if clauses.

This means that, depending on resources required by operations and dependencies between

them, the compiler will only be able to use a subset of the resources on the switch. To account

for this, we consider pipeline stages as a separate resource. Figure 3.2(d) shows the number of

pipeline stages needed as a function of level L if we respect this architectural constraint. We see

that UnivMon requires similar or more pipeline stages than R-HHH with the same configuration

parameters, and the gap increases along with the number of levels. This is a direct result of the

sequential dependencies in UnivMon. The number of pipeline stages used is measured by running

the RMT resource mapper.

3.2 Optimizations

Next, we present a series of optimizations to address the resource bottlenecks we identified earlier.

For each optimization, we discuss the key idea, before then discussing the correctness and appli-

cability constraints of that key idea. Some of these optimizations (e.g., O1, O3, O4) have appeared

in earlier theoretical efforts and demonstrated in other settings (e.g., FPGA, software switch). Our

contribution here is translating these ideas into hardware switches. Others (O2, O5, O6) are novel

to the best of our knowledge. As summarized in Table 3.2, our optimizations can be applied to a

broad spectrum of published sketches for telemetry and benefit 15 out of the 19 sketches listed.

Some sketches that are outside of our scope cannot be supported, as they either use: (1) process-

ing logic that is infeasible in hardware (i.e., Hashpipe); (2) counter data structures different from

sketches (i.e., BeauCoup); or (3) complex processing patterns such as packet recirculation (i.e.,

Precision).

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 27

Sketch Type Sketch Name Feasible
on HW?

Applicability
of SketchLib

Frequency
Estimation
/
Heavy
Hitters

Count-Min [37] Yes O6
Count Sketch [32] Yes O1, O6
MRAC [66] Yes O3, O5
Hashpipe [88] No N/A, due to in-

feasible logic
Precision [23] Yes No, uses packet

recirculation
Hierarchical
Heavy Hitters

RHHH [22] Yes O1, O2, O5, O6
HHH [38] Yes O1, O6

Cardinality PCSA [46] Yes O3, O5
MRB [43] Yes O3, O5
LogLog [41] Yes O3
HyperLogLog [47] Yes O3

Entropy EntropySketch [67] Yes O1
Change
Detection K-ary [65] Yes O1, O2, O6

Super
Spreaders

SpreadSketch [92] Yes O3, O5
BeauCoup [34] Yes No, non-

counter based
sketch

General UnivMon [71] Yes O1, O2, O3,
O4, O5, O6

FCM [89] Yes O6
SketchLearn [58] Yes O2
ElasticSketch [100] Yes Not applicable

Table 3.2: Applicability of SketchLib on existing sketches.

3.2.1 Optimizing Hash Calls

Both single- and multi-level sketches need to compute multiple hash functions, resulting in high

hash call usage in the hardware pipeline. We describe two optimizations: consolidating short hash

calls and reusing hash calls.

Optimization 1. Consolidate many short hash calls. We observe that many hash calls only need

short-length (e.g., 1-bit) hash results. For instance, count sketch (Figure 1.1) computes a series of

1 bit hash calls, s1 to sR. Similarly, UnivMon (Figure 1.2 (b)) computes h1 to hL. We can reduce

the number of hash calls by consolidating many short hash calls, as long as the inputs to the hash

calls are the same.

Consider a count sketch with R ×W = 3 × 512 counters. Per row, we need two hash results: a

9-bit (i.e., log2 512 = 9) hash to index into the counter array and a 1-bit hash for the “sign” of the

counter. Instead of using 3 ⋅ 2 = 6 hash calls, we can instead use one hash call that returns a 30-bit

result to provide the 6 hash calls as in Figure 3.3. Note that splitting a long hash result only needs

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 28

simple hardware shift and bit mask operations. R-HHH and UnivMon are also benefited as they

use multiple count sketches. Further, UnivMon uses many 1-bit hash calls in its sampling stage.

9bit 1bit Total 30 bit

9bit 1bit

9bit 1bit

6 hash calls 1 hash call

9bit 1bit 9bit 1bit 9bit 1bit

Figure 3.3: Optimization 1 reduces hash calls for count sketch.

Correctness and applicability: For this optimization to be valid, the short-bit hash results that

are split from the longer hash result must use the same flowkey as the input and, if required by

the sketching algorithm, be pairwise independent [32]. Independence is achieved by randomly

picking (different) seeds in practice for hash calls [22, 71, 100]. Theoretical analysis in other

contexts [45, 64] shows that using different bits from the same hash call can also provide indepen-

dence. Empirically, recent work [97] shows no accuracy loss for Univmon, and our results (§3.4)

confirm this with other sketches listed in Table 3.5. In addition, hash calls need to be short, so

that the sum of hash bit length is less than the length of one call (e.g., 32 bits). Fortunately, many

single- and multi-level sketches [22, 32, 43, 46, 47, 66, 71] satisfy this condition.

Optimization 2: Reuse the hash calls across levels for multi-level sketches. Our second insight

is that we can reuse the hash calls if there are no independence requirements across them; i.e., they

can use the same seed. Although hash independence is usually required across different counter

arrays within a single level sketch, it is not required across levels [30]. Thus, we can use the same

hash seed cross different levels for multi-level sketches.

Specifically, the original implementations of R-HHH and UnivMon (see Figure 1.2) use a dif-

ferent hash seed in each of the CS_level_i count sketch executions. We can modify the code to

reuse the same hash seed and reuse hash results when independence is not needed. This opti-

mization reduces the number of hash calls significantly. For example in Figure 1.2, R-HHH and

UnivMon each have a set of hash calls Fi as {fi1, fi2, ...fi(2R)} at each level i of count sketch,

resulting in L ⋅ 2R hash calls. By simply changing all of Fi to F1, we reduce hash call usage from

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 29

Flowkey Seed Additional Condition Opt

same diff.
Sum of hash bit length is
less than max capacity O1

same same - O2
diff. same One level of hash calls is executed
diff. diff. - -

Table 3.3: Conditions for optimization 1 and optimization 2.

control ingress // UnivMon
{

apply(CS_level_1);
apply(compute_h1);

if (h1 == 1) { // 0 or 1
apply(CS_level_2);
apply(compute_h2);

if (h2 == 1) {
apply(CS_level_3);
apply(compute_h3);

if (h3 == 1) {
...

}

CS
2

Stage 1
CS
3

Stage 2

… CS
L

Stage L/2
CS
1

Stage 1
CS
2

Stage 2

… CS
L

Stage L

Internal fragmentation

L pipeline stages L/2 pipeline stages

CS
1

control ingress // Opt_UnivMon
{

apply(compute_h); // L bit
level = TCAM_optimization(h);

if (level >= 1) {
apply(CS_level_1);

}
if (level >= 2) {
apply(CS_level_2);

}
if (level >= 3) {
apply(CS_level_3);

}
...

}

Figure 3.4: Optimization 3 removes the sequential computation dependency and reduces the usage of pipeline stages.

L ⋅2R to 2R. For R-HHH, the result of F1 is used to update one selected level of count sketch, and

for UnivMon, result of F1 can be used to update potentially multiple levels per packet.

Correctness and applicability: Reusing seed values across levels does not affect the theoretical

independence requirements [30]. We empirically confirm in the evaluation that this optimization

achieves similar accuracy (§3.4.1).

Table 3.3 summarizes the conditions under which the two hash optimizations are used. Note

that for O2, if different levels’ hashes have diverse output bit-length requirements, the hash call

with the longest output bit-length will be used to supply hash results with various bit lengths. We

also need to make sure that the hash seeds are either the same in the first place or can be set to be

the same for O2 to apply.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 30

3.2.2 Optimizing Pipeline Stages

The sequential if clauses are observed in both single and multi-level sketches. This creates se-

quential compute dependencies and entails high usage of pipeline stages.

Optimization 3: Avoiding the sequential if clauses using a longest prefix match. To explain

this optimization, we use UnivMon (Figure 3.4) as an example. Deciding which levels to be

updated for each flowkey creates a logical dependency between levels. Specifically, level i+1

needs to be updated only if the value of hi returns 1 for hash functions hi ∶ [n] → {0/1}. These

L-level dependencies lead to an implementation as Figure 3.4-left using sequential if clauses with

hash values (h1,h2,. . . ,hL).

To address this bottleneck, our insight is that the number of leading 1-bits in (h1,h2,. . . ,hL)

represents the sequence of “true” conditions in the if clauses. We observe that this is equivalent

to the longest prefix match (LPM), which can be computed efficiently in hardware. That is, we can

compute L hash bits together using a single L bit hash and use LPM to identify which layers need

to be updated. This LPM operation is realized via TCAM as shown in Figure 3.5. We insert rules

with 1- and wildcard bits corresponding to each level and perform LPM to obtain the last level

of UnivMon for each flowkey. LPM is relatively cheap—can be done in one pipeline stage using

a small amount of TCAM. With this optimization, we can reduce the usage of pipeline stages by

half if one count-sketch consumes half of the resources in one pipeline stage (Figure 3.4-right).

Correctness and applicability: Our refactored implementation has the same functionality, resulting

in the same updates to the sketch arrays. This optimization applies to many single and multi-level

sketches that build on the power-of-two choices observation [43, 46, 47, 66, 103].

3.2.3 Optimizing Memory Accesses

Sketches require memory accesses for their counter updates, leading to high SALU usage. This

becomes especially significant for multi-level sketches.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 31

5 bit hash call -> (0𝑏11101)

1****
11***
111**
…

1
2
3
4
…

TC
AM Select as

last_level

Figure 3.5: Replacing the sequential if clauses via TCAM.

Optimization 4: Refactor multi-level sketches to update one level per packet. We refactor

multi-level sketching algorithms and their code to guarantee only one level is updated per flowkey.

Recall that UnivMon needs to update one or more levels of count sketch (CS) for each packet

with its flowkey. In Figure 3.6 (top), a flowkey of packet Kgreen updates three levels, while Kgray

updates two levels, and Kred updates all levels of count sketch. Instead, our modified algorithm is

guaranteed to update only the “last” level for each packet, as shown in Figure 3.6 (bottom). The

modified algorithm becomes structurally similar to other multi-level sketches that natively update

only one level [22, 43, 46, 66]. As a result, the processing overhead is significantly reduced.

This “update-last-level” idea was also proposed to optimize UnivMon for embedded plat-

forms [99] and software switches [73, 97]. Our contribution here is: (1) to extend this to pro-

grammable switches and (2) to generalize the idea to support updating arbitrary levels. Based on

the algorithmic design, different multi-level sketches may require different optimization strategies

to update a level (e.g., RHHH [22] modifies HHH [38] by randomly selecting a level to update). To

implement this optimization, we can insert user-defined ternary rules in TCAM (as O3) to classify

packets into different levels in a multi-level sketch.

Correctness and applicability: By construction, our modified algorithm provides equivalent func-

tionality as the original version. As shown on the right side of Figure 3.6 withKgreen flowkey as an

example, Levels 1 and 2 do not need to be updated anymore. Level 3 has the estimated flow count

for this particular flow with the same or better accuracy since Level 3 only processes a smaller

amount of traffic than Levels 1 and 2. Thus, the estimated count of Kgreen from Level 3 can be

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 32

…

Data Plane Sketch Update Control Plane

Original
UnivMon

…

4 2 1 1

2 1 1

2 1

1

… …

4

1

2

1
Optimized
UnivMon

CS L

CS L

CS 1

CS 1

CS 2

CS 3

CS 2

CS 3

…
…

Equivalent

packet stream

Figure 3.6: UnivMon updates only the last level per packet. CS stands for Count-Sketch.

Counter
Array 1

SALU 1
…

1

SALU 1

L2 3 …Counter
Array 2

SALU 2

Counter
Array 3

SALU 3

Counter
Array L

SALU L

Figure 3.7: Optimization 5 removes unnecessary allocated SALUs by rewriting P4 code.

reused for Levels 1 and 2. This applies to all other flowkeys during the offline estimation in the

network control plane.

To apply this optimization, a multi-level sketch should meet two conditions: (1) the original

algorithm has multiple sketch updates per packet, and (2) it is algorithmically correct to reduce

the multi-level updates to one per packet. That said, we acknowledge that there are scenarios

where this optimization is not directly applicable. For instance, it is not obvious if/how we can

refactor some multi-level sketches such as SketchLearn [58] to update only one level per flowkey

(if possible). This requires future research.

Optimization 5: Remove unnecessary SALU operations. A multi-level sketch maintains multi-

ple independent levels of sketches. For each counter at each level, the compiler statically allocates

an SALU for memory access. This results in high SALU usage, even if only one level needs to be

updated per packet; i.e., usage is the same as updating all levels.

We can remove unnecessary SALUs when only one update is needed per packet. The compiler

inefficiently preallocates SALUs for all possible memory accesses because it is difficult to auto-

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 33

Resource Bottlenecks Optimizations API

Hash Calls O1. Consolidate short-bit hash calls hash_consolidate_and_split()
O2. Reuse hash calls across levels select_key_and_hash()

Pipeline Stages O3. Remove sequential if clauses using TCAM tcam_optimization()

SALUs O4. Update only one level per flowkey -
O5. Rewrite P4 code to reduce memory accesses consolidate_update()

Resources for tracking heavy flowkeys O6. Use a hash table to remove duplicate flowkeys heavy_flowkey_storage()

Table 3.4: The relationships among the bottlenecks, optimizations and API calls.

matically discern that only one update is needed at runtime. Our optimization restructures the P4

code to make this explicit for the compiler that only one count sketch update is needed per level.

Instead of using separate counter arrays located in different switch memory regions, we consol-

idate the counter arrays of all levels in a single array located in one region of memory. This is

possible because SALU can support random access, thus based on the selected level, we can com-

pute the corresponding index value to access the consolidated register. Figure 3.7 illustrates this

SALU optimization. This optimization reduces the SALU requirements for multi-level sketches

by a factor of L (the number of levels, e.g., 25 for R-HHH [22]).

Correctness and applicability: This technique does not affect accuracy because the modified code

has the same functionality as the original version. We can apply the optimization to multi-level

sketches that have the property of updating only one level per flowkey. There are many multi-level

sketches satisfying this property [22, 43, 46, 66, 71].

3.2.4 Optimizing Heavy Flowkey Reporting

Optimization 6: Use a hash table and an exact-match table for checking duplicate flowkeys.

As discussed in §3.1.2 B3, prior efforts [59, 72] use Bloom filters as the duplicate checker but the

false positives from the filters will cause misses of heavy flowkeys, unless a very large Bloom filter

is used. To improve this tradeoff between miss rate and data plane resource, we use a hash table

and an exact-match table to check duplicates. Specifically, the hash table stores heavy flowkeys

and detects whether there is a collision. For each heavy flowkey, if it is already stored in the hash

table or exact-match table, it will not be reported to the controller; otherwise, it will be inserted to

the hash table. However, if this flowkey collides with another key in the hash table, then it will be

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 34

reported to the controller, which then inserts this flowkey to the exact-match table to filter future

duplicate keys. In this way, we can ensure a zero miss rate on reporting heavy flowkeys.

Correctness and applicability: This optimization ensures a zero miss rate of heavy flowkeys be-

cause when collisions happen in the hash table, the flowkeys are reported to the control plane and

inserted to the exact-match table (as a secondary duplicate checker). No unique heavy flowkeys

are dropped in this mechanism. Compared to Bloom filters, this approach adds some additional

control plane bandwidth when collisions happen in the hash table. As we evaluate in §3.4.5, this

added bandwidth is small (e.g., 2% increase). This optimization can be applied to both single- and

multi-level sketches requiring heavy flowkey tracking [22, 32, 71].

3.3 SketchLib API

In this section, we present our P4 API for helping sketch developers to use our optimizations. For

each API call, we show the implementation for the macro and how the macro is used. SketchLib

API supports both P4-14 and P4-16 [17]. Table 3.4 maps the optimizations to the API calls.

hash_consolidate_and_split(Key,Seed,List(BitLen),BL_sum,List(Mask)

) 3 reduces hash calls by consolidating small bit hash calls (O1). Figure 3.8 shows how a se-

quence of short hash calls is replaced by a macro that uses only a single hash call with length

the sum of all BitLen of the shorter hashes. The resulting hash value is then partitioned in

shorter hashes. For P4-14, we split the result using modify_field_with_shift(dst,

src, shift, mask) primitive (i.e., dst = (src » shift) & mask) where mask is

a series of 1’s with BitLen as shown. For P4-16, the same principle is applied, but bit slice op-

eration (e.g., h[BL1:0]) is used. Note that the macro specifies both the number of short hashes

being merged (List) and the names of the short hashes, so multiple macros must be defined if O1

is applied multiple times.
3While there is no concept of List in P4, we use it to describe the type of parameters conceptually throughout this section. In our API

implementations, it is converted to multiple parameters; e.g., List(BitLen)→ (BL1, BL2, BL3) as shown in Figure 3.8.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 35

1: h1 = hash(sIP, seed1, 5);
2: h2 = hash(sIP, seed2, 3);
3: h3 = hash(sIP, seed3, 4);

1:#define
hash_consolidate_and_split_3
(Key, Seed, BL1, BL2, BL3,
BL_sum, mask1, mask2, mask3)

2: h = hash(Key, Seed, BL_sum);
3: h1 = h & mask1;
4: h2 = (h >> BL1) & mask2;
5: h3 = (h >> (BL1+BL2)) & mask3;

1: hash_consolidate_and_split_3
(sIP, seed1, 5, 3, 4, 12,
0b11111, 0b111, 0b1111)

Figure 3.8: hash_consolidate_and_split()

select_key_and_hash(List(Key),Level,Seed,BitLen) implements O2 for the case

one of the several hash calls with different Key and same Seed is selected for execution. Here,

we can select the key in advance and use only one hash call to get the result as in Figure 3.9. For

instance, R-HHH can be optimized by using this API call. The example shown is a single hash

call, but if multiple hash calls are needed (e.g. sketch with R =5 needs 5 hash calls), the number

of them can be increased. For the sketches that share the same Key and Seed (e.g., UnivMon),

no separate API call is necessary since the hash value can simply be reused.

1: if (V == 1)
2: h = hash(key1, seed, 3);
3: if (V == 2)
4: h = hash(key2, seed, 3);
5: if (V == 3)
6: h = hash(key3, seed, 3);

1: #define select_key_and_hash_3
(key1, key2, key3, V, Seed, BL)

2: if (V == 1)
3: k = key1;
4: if (V == 2)
5: k = key2;
6: if (V == 3)
7: k = key3;
8: h = hash(k, Seed, BL);

1: select_key_and_hash_3
(key1, key2, key3, V, seed, 3)

Figure 3.9: select_key_and_hash()

tcam_optimization(Hash_Result) implements O3 to remove sequential if clauses by

applying an equivalent a LPM table which uses TCAM to which levels need to be updated. The

macro implements the use of the TCAM to look up the level (see Figure 3.4).

consolidate_update(Level,Index) implements O5 to reduce memory accesses, as il-

lustrated in Figure 3.10. Level indicates the selected counter array and Index references the

location for the memory update within the counter array. The API call consolidates counter arrays

and computes the new address for the consolidated array. size indicates the bit length (e.g., 10)

of the width (e.g., 1024).

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 36

1: if (V == 1)
2: update_array_1(V, index);
3: if (V == 2)
4: update_array_2(V, index);
5: if (V == 3)
6: update_array_3(V, index);

1:#define consolidate_update_3
(V, index)

2: n_index = ((V-1)<<(size))+index;
3: update_array_1_to_3(n_index);

1: consolidate_update_3(V, index)

Figure 3.10: consolidate_memory_update()

heavy_flowkey_storage(Key,List(Estimate),Threshold) reduces the memory

space for heavy flowkeys (O6). The challenge is checking whether the estimated flow count is

above a threshold entirely in the data plane. Specifically, this entails computing the median value

based on an estimated flow count from each row and comparing it to the threshold value. How-

ever, computing the median is not supported in the data plane. Instead, we leverage the fact that

we can check whether the median of a set of values exceeds a threshold without computing the

median as follows. We compare all of estimated flow count for all rows, as shown in lines 3-9

in Figure 3.11 which is for R = 3 case. Then, the condition (sum (s1, s2, s3) ≥ 2) at line 11 is

equal to (median(est1, est2, est3) > T).4 This can be generalized for different Rs. We implement

the duplicate filter using a hash table and a exact-match table. If a flowkey collides with an entry

in the hash table and the exact-match table does not have an entry for the flowkey, we report it to

switch control plane via a PCIe channel. Upon receiving the reported key, the switch control plane

CPU adds entries into the exact-match table.

3.4 Evaluation

In this section, we evaluate the benefits of SketchLib on seven sketches. Across a range of settings,

we see that SketchLib can reduce the resource footprint of sketches on switch hardware (up to 96%)

while achieving similar accuracy.
4For Count-Min sketch [37], we can use (sum (s1, s2, s3) ≥ 1).

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 37

01:#define heavy_flowkey_storage_3
(Key, Est1, Est2, Est3, T)

02:
03: s1, s2, s3 = 0;
04: if (Est1 > T)
05: s1 = 1;
06: if (Est2 > T)
07: s2 = 1;
08: if (Est3 > T)
09: s3 = 1;
10:
// above threshold test
11: if (s1 + s2 + s3 >= 2) {
12: if (HT[h(Key)] == empty) { // HashTable
13: HT[h(Key)] = Key;
14: send_to_cpu(Key);
15: } else if(HT[h(Key)] != Key) {
16: if (!(flowkey in MT)) { // MatchTable
17: send_to_cpu(Key);
18: }
19: }
20: }

Figure 3.11: heavy_flowkey_storage()

3.4.1 Experimental Setup

Sketches. We implement all 15 sketches in Table 3.2 using SketchLib and source codes for

sketches are available at [17]. Among 15 sketches, we pick seven representative sketches for our

evaluation as in Table 3.5.

Testbed. We evaluate SketchLib on a local testbed with an Edgecore Wedge 100BF Tofino-

based programmable switch and a server equipped with dual Intel Xeon Silver 4110 CPUs, 128GB

RAM, and a 100Gbps Mellanox CX-4 NIC connected to the switch. We use the P4-16 version of

SketchLib with Tofino SDE version of 9.1.1 in our experiments.

Traces. We use five CAIDA backbone traces capture at 3/20/14 to 6/19/14 Sanjose, 1/21/16

Chicago, 5/17/18 to 8/16/18 New York City [1]. We split one hour traces into 30 second epochs.

Each epoch includes about 12M-23M packets, with 398K distinct source IPs, 280K distinct desti-

nation IPs, and 1.6M distinct 5 tuples.

Sketch parameters. Table 3.5 shows the configuration parameters for the sketches. Most sketches

use 4 byte counters. The cardinality estimators (e.g., MRB and PCSA) use bitmap thus each

counter is 1 bit.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 38

Level (L) Row (R) Width (W) Space
CS [32] - 5 4096 80KB
HLL [47] - - 2048 8KB
UnivMon [71] 16 5 2048 640KB
R-HHH [22] 25 3 2048 600KB
MRAC [66] 12 - 2048 96KB
MRB [43] 16 - 4096 8KB
PCSA [46] 32 - 20 0.125KB

Table 3.5: Sketch parameters for evaluation.

Metrics. Depending on the sketch and the measurement task, we report two error metrics. For

each metric, we run the experiment 5 times independently with different hash parameters and

report the 25%, 50%, 75% percentiles of the errors. For brevity, we report results using source IP

as the flowkey except for R-HHH, noting that the results are qualitatively similar for other types

of flowkeys. R-HHH uses (source IP, destination IP) pair as flowkey as presented in the original

paper [22].

● Average Relative Error (ARE): 1
k ∑

k
i=1

∣fi−f̂i∣
fi

, where k means the top k heavy flows. fi is actual

flow count for flow i and f̂i is the estimated flow count from the sketch. fi ≥ fi+1 for any i, thus

it is sorted in descending order. We use k=50 for count sketch and R-HHH.

● Relative Error (RE): ∣True−Estimate ∣
True , where True is ground truth value and Estimate is estimated

value. We use this metric for sketches that estimate cardinality and/or entropy.

3.4.2 Accuracy

We run the accuracy experiment of SketchLib in two ways. First, we show the accuracy is pre-

served between baseline software implementation and hardware implementation with SketchLib

(§3.4.2). Second, we compare the accuracy of the hardware implementations with and without

SketchLib (§3.4.2).

Comparison with the Software Baseline

Reporting methodology. We compare the accuracy of the sketch refactored with SketchLib (on

hardware) against a baseline software implementation. The baseline software implementation runs

sketches on the software. We run experiments over multiple traces with independent runs. After

optimizing sketches with SketchLib, we run experiments on Tofino hardware with all five traces.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 39

trace1 trace2 trace3 trace4 trace5

1.0

1.5

2.0

2.5

A
R

E
(%

)

CS

((a)) Count-sketch: flow count

trace1 trace2 trace3 trace4 trace5

8

10

12

14

A
R

E
(%

)

RHHH

((b)) RHHH: flow count estimate

trace1 trace2 trace3 trace4 trace5
0

5

10

15

20

25

R
E

(%
)

UnivMon Cardinality

((c)) UnivMon: cardinality estimate

trace1 trace2 trace3 trace4 trace5
0

2

4

6

8

10

R
E

(%
)

UnivMon Entropy

((d)) UnivMon: entropy estimate

trace1 trace2 trace3 trace4 trace5
0

2

4

6

R
E

(%
)

HLL

((e)) HLL

trace1 trace2 trace3 trace4 trace5
0

2

4

6

R
E

(%
)

MRB

((f)) MRB

trace1 trace2 trace3 trace4 trace5
0

10

20

30

R
E

(%
)

PCSA

((g)) PCSA

Figure 3.12: Accuracy comparison of sketches between original and optimized sketches across traces. Left: original, Right:
optimized.

1 2 3 4 5
Number of counter rows (R)

101

102

H
as

h
C

al
ls

R-HHH

UnivMon

count-sketch

Optimized R-HHH

Optimized UnivMon

Optimized count-sketch

((a)) Hash Calls

1 2 3 4 5
Number of counter rows (R)

101

102

S
A

L
U

s

((b)) SALUs

4 8 12 16 20
Number of levels (L)

2

4

6

8

P
ip

el
in

e
S

ta
ge

s
(N

or
m

al
iz

ed
)

((c)) Pipeline Stages

Figure 3.13: Resource consumption before/after optimizations.

For each one-hour trace, we randomly sample 40 30-second epochs and obtain 5 accuracy numbers

per epoch with independent trials. The server replays traces to the switch using tcpreplay at a speed

of 800K packets/second. Between epochs, we wait for switch control plane to pull counters and

flowkeys from the data plane (see §3.5).

Result. Figure 3.12 empirically validates that SketchLib optimizations achieve similar accuracy.

For every trace, the left blue bar represents the software baseline and the right green bar is the

hardware reported result with SketchLib applied.5 Figure 3.12(a) - Figure 3.12(d) shows the accu-

racy of sketches that need to track heavy flowkeys and the rest show sketches that need to maintain
5We do not show MRAC as the estimation logic for MRAC is not public.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 40

UnivMon Without SketchLib With SketchLib
Level (L) 8 6 5 16
Row (R) 4 5 6 5

Width (W) 32768 32768 32768 2048
RE (%) 95.4% 98.8% 99.4% 9.5%

Table 3.6: Relative error in cardinality estimation with and without SketchLib.

only counter arrays. Figure 3.12(c) and Figure 3.12(d) show the errors of UnivMon for cardinal-

ity estimation and entropy estimation. We can visually confirm that the distributions of accuracy

before and after optimizations are similar.

Accuracy Improvement with SketchLib

Reporting methodology. We want to compare the best accuracy between with and without

SketchLib on the hardware. We use UnivMon for this experiment. To systematically sweep config-

uration parameters for the best accuracy without SketchLib, we exploit the property of UnivMon.

Among three sketch parameters level (L), row (R), and width (W), L is the most critical param-

eter, thus we pick three highest feasible L. Then we find maximum R and lastly W . Given fixed

L, we explored different parameter R other than maximum R but result was similar. We use the

simulator with 40 samples of trace1. With SketchLib, we use the same configuration from the

original UnivMon paper.

Result. Table 3.6 shows that all feasible configurations without SketchLib show high error rate

more than 95%. On the other hand, UnivMon with SketchLib shows low error rate of 9.5%.

3.4.3 Switch Resource Consumption

Next, we report the resource usage improvements on the identified resource bottlenecks (Ta-

ble 3.7). The sketch parameters used are reported in Table 3.5.

Reporting methodology. We measure resource usages from original implementation using RMT

resource mapper and optimized implementation using Tofino compiler to measure resource reduc-

tions. To factor out resource reductions for different optimizations in Table 3.7, we wrote P4 code

with individual optimizations applied using SketchLib APIs to measure the resource usages.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 41

Sketches Hash Calls (O1/O2) SALUs Pipeline Stages
CS 31%/0 9%

HLL 80%/0 86%
UnivMon 44%/47% 90% 65%

RHHH 32%/60% 92% 62%
MRAC 87%/0 91% 68%
MRB 90%/0 93% 76%
PCSA 92%/0 96% 86%

Table 3.7: Individual resource reductions by optimizations.

Hash calls. Table 3.7 shows that using O1 to consolidate the 1-bit hash calls is effective for both

single and multi-level sketches. For example, the number of hash calls for count sketch is reduced

by 31%. R-HHH and UnivMon benefit from O1 as they are composed of multiple count sketches.

Further, PCSA, MRAC, MRB and HLL have a series of 1-bit hash calls which O1 improves. For

UnivMon and R-HHH, we can apply both O1 and O2 by reusing hash calls across levels to further

reduce hash calls by over 90%. We further investigate the sensitivity of the reduction of hash

calls vs. sketch parameters in Figure 3.13(a).6 Multi-level sketches UnivMon and R-HHH have

significant reduction and the resource used is close to single-level count sketch.

Stateful ALUs. O5 applies only to multi-level sketches and reduces SALU usage significantly

if there are many levels in the sketch. With 16-32 levels, O5 saves 92% to 96% of the SALUs.

We can see in Figure 3.13(a) that O5 reduces SALU of UnivMon and R-HHH significantly across

rows.

Counter Memory Space. Interestingly, O5, which we designed to reduce SALU usage, also

reduces memory space. Investigating this further, we find that original sketch implementations

have a memory region fragmentation problem. One counter array is smaller than a block of SRAM,

causing additional (unused) memory overhead per each counter array. O5 has the added benefit

of consolidating counter arrays and achieve 54%–96% of resource reduction in memory space for

multi-level sketches (not shown).

Pipeline stages. The reduction of pipeline stages depends on a combination of factors — hash

calls, SALUs, and code dependencies. Table 3.7 shows reduced pipeline stages from 9% to 86%

across sketches. Sketches where O5 applies (HLL, UnivMon, MRAC, MRB, PCSA) have a large
6Missing point for R-HHH in Figure 3.13 means it is infeasible.

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 42

FCM native SketchLib-optimized
Resource FCM+topK FCM(+O6) CM UnivMon

Pipe. Stage 8 8 7 12
SRAM 9.5% 10.8% 8.0% 7.3%
TCAM 0% 0% 0% 0.3%
SALUs 20.8% 14.6% 14.6% 12.5%

Hash Calls 13.9% 9.7% 11.1% 18.1%
Hash Bits 5.6% 4.0% 4.0% 4.9%

Table 3.8: Comparison of hardware resource utilization.

SketchLib-optimized
FCM+topK FCM(+O6) CM UnivMon

HH (ARE) 1.41% 0.01% 0.13% 0.73%

Table 3.9: ARE of heavy hitter detection.

reduction because it removes many sequential if clauses. Effectively, our optimization can make

the footprint of multi-level sketches agnostic to number of levels (Figure 3.13(c)).

3.4.4 Comparison with FCM

FCM [89] is a recently published sketch with general capability, and it is feasible on the pro-

grammable switch. Thus, we compare FCM against sketches optimized with SketchLib in terms

of resource usages and accuracy. Table 3.8 shows resource utilization comparison between FCM

and SketchLib optimized sketches. We use the same configuration from public FCM code [4], and

make SketchLib-optimized sketch use similar resources to FCM.

Heavy hitter detection. Table 3.9 shows the accuracy result of heavy hitter detection. We can

see that FCM+topK suffers from a high error rate because of an inefficient mechanism for tracking

heavy flowkey (approximate topK implementation of ElasticSketch [100]). Note that if FCM

deploys one of our optimizations for tracking heavy flowkeys, FCM+O6 reduces the error rate

significantly from 1.41% to 0.01%. We use the simulator with 40 samples of trace1 and report

median ARE.

Entropy and cardinality. Table 3.10 and Table 3.11 compare entropy and cardinality estimation

accuracy between FCM+topK and SketchLib-optimized UnivMon. In the experiments, UnivMon

reports top-200 heavy hitters per level. For entropy, UnivMon shows a relatively stable error

rate (2∼3%) across workloads, whereas FCM is dependent on workloads and the error rate can

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 43

of flows 500K 1M 5M 10M 30M
FCM+topK 0.35% 0.84% 3.60% 6.15% 17.0%
SketchLib
UnivMon 2.59% 2.08% 2.21% 2.36% 2.96%

Table 3.10: Entropy error (RE), FCM vs. SketchLib-optimized UnivMon.

of flows 500K 1M 5M 10M 30M
FCM+topK 0.004% 0.107% 0.519% 100% 100%
SketchLib
UnivMon 21.9% 20.7% 31.7% 39.5% 73.8%

Table 3.11: Cardinality error (RE), FCM vs. SketchLib-optimized UnivMon.

go up to 17%. For cardinality, the error rate of UnivMon is moderately increasing 7, whereas

FCM suddenly becomes unusable after 5M flows. This is because Linear Counting [96] is used to

estimate cardinality in FCM.

3.4.5 Tracking Heavy Flowkeys

To evaluate the impact of O6, we consider three metrics: miss rate, control plane bandwidth,

and data plane memory. We compare SketchLib-optimized approach vs. an “optimal” software

solution. For this evaluation, we use two sketches (CS, UM) that track “heavy” flowkeys. For

each 1-hr trace, we split it into epochs as before, and set a target threshold corresponding to the

top 0.2 percentile of flow sizes (The results are independent of the threshold; this is to make the

experiment concrete). Across different traces and sketches, SketchLib incurs zero miss rate, and at

most 2% increase in control plane bandwidth (due to small number of duplicates), using less than

400KB of data plane memory overall (independent of the threshold, results not shown for brevity).

To put this in context, a Bloom-filter based strawman for suppressing duplicates, as discussed in

§3.1 and configured with the same memory use has a miss rate of 0.2%. Overall, this confirms

that SketchLib offers a more practical alternative to the infeasible, inaccurate, and/or expensive

strawman solutions from §3.1.
7We observe that, when UnivMon reports more heavy hitters per level, the cardinality error rate decreases (e.g., 17.58% in 10M flows with

top-1000).

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 44

With SketchLib
Resource UnivMon UnivMon + NFs (L2, L3, LB, FW)

Pipe. Stage 12 12
SRAM 7.3% 38.6%
TCAM 0.3% 25.0%
SALUs 12.5% 12.5%

Hash Calls 18.1% 18.1%
Hash Bits 4.9% 11.2%

Table 3.12: Sketches are infeasible without SketchLib. With SketchLib, there are rooms for additional network functions
(L2/L3 forwarding, L4 load balancer, and stateful firewall).

Sketch CS HLL UM RHHH MRAC MRB PCSA
Before 201 290 460 471 261 317 305
After 131 112 127 128 91 94 93

Table 3.13: Lines of code simplification (UM stands for UnivMon).

3.4.6 Other Benchmarks

Additional Network Functions. After optimized with SketchLib, sketches can even coexist with

additional network functions such as L2/L3 forwarding, L4 load balancer, and stateful firewall.

Table 3.12 shows resource utilization for additional network functions.

Code simplification. In addition to the resource efficiency benefits, our optimizations also sim-

plify the sketch implementations by reducing the lines of code, as shown in Table 6.7.

Compilation time. We also measured compilation time to see whether our modified code will add

significant overhead to the compiler. Compile time is measured on the server specified in (§3.4.1).

For most cases, there was a negligible (≤ 1 second) increase (not shown).

3.5 Related Work

Programmable switches. The programmable switch architecture was introduced by Bosshart and

others [28]. Subsequent work proposed a programming framework [29], functional hardware [9],

and also compilation workflows [60]. Other vendors have developed programmable pipelined

architectures and compilation workflows from P4 or P4-like primitives [3, 6]. While our focus is

on Tofino, our approach could be useful for other platforms as well.

Optimizing sketches. HashPipe [88] focused on heavy hitter detection, but it is not feasible in

the current hardware. Other work has focused on the optimizing sketching algorithms in software

CHAPTER 3. SKETCHLIB: OPTIMIZING A SINGLE SKETCH INSTANCE ON PROGRAMMABLE
SWITCHES 45

switches (e.g., [57, 73, 97]). However, some of their ideas do not translate into a hardware context.

For instance, NitroSketch increases the memory footprint to reduce CPU consumption, but the

key bottleneck in hardware is different. Similarly, other approaches split a sketch into a fast and

slow path on the software switch (e.g., [57]). Unfortunately, this is not relevant in hardware since

we need all operations to be in the fast path. Some recent work [97, 99] specifically focus on

optimizing UnivMon for embedded platforms and software switches. We translate these insights

to a switch hardware realization, and generalize beyond UnivMon.

Other work in network telemetry. Our focus in this paper is on sketch-based telemetry. There

are other efforts for complementary monitoring capabilities (e.g., [52, 55, 91]) and performance-

oriented objectives (e.g., [51, 83]).

3.6 Summary

Unfortunately, existing sketch implementations are not efficiently realizable, thereby limiting their

effectiveness and coexistence with other switch functions. To this end, we systematically analyze

the resource bottlenecks, suggest correct-by-construction optimizations, and design a practical

library to help developers use these optimizations. Our evaluations show that the SketchLib library

is broadly applicable to many sketches and reduces their resource footprint while also achieving

similar accuracy.

Chapter 4

Sketchovsky: Optimizing Ensembles of Sketch

Instances on Programmable Switches

Network operators need to concurrently run diverse measurement tasks for network management

tasks, such as traffic engineering, anomaly detection, load balancing, and resource provisioning

[19, 26, 50, 79, 101]. A given flow-level measurement task computes a desired statistic (e.g.,

heavy flow size or the distinct number of flows) based on the definition of a flowkey (e.g., srcIP or

5-tuple), a flow size (e.g., packet counts or bytes), and a measurement epoch (e.g., 1 minute).

Sketching algorithms or sketches appear to be a promising avenue to support measurement tasks

on data collected from programmable switches (e.g., [17, 18, 20, 37, 47, 71, 88, 106]). To sup-

port one measurement task, a sketch instance on a programmable switch is instantiated based on

a sketching algorithm with configuration on parameters (e.g., flowkey or resource allocation). In

practice, supporting the collection of measurement and management tasks will require simultane-

ously running an ensemble of sketch instances on the programmable switches.

However, existing sketch-based telemetry efforts largely focus on running a single sketch in-

stance on programmable switches; they cannot effectively support an ensemble of sketch in-

stances. Naively extending a single sketch instance to support an ensemble of measurement tasks

will require at least a linear increase in hardware resources (e.g., counters, hash units, pipeline

stages), which is intractable as more measurement tasks are needed. While there have been

46

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 47

Sketchovsky

Strategy
Finder

Cross-Sketch
Opts

Auto-code
Composition

inst1.p4inst1.p4inst1.p4

An Ensemble of
Sketch Instances opt.p4

An Optimized
Sketch Code

IN

Apply opts
X to insts Y

Strategy

Figure 4.1: Sketchovsky. Opts is optimizations and insts is instances.

some recent attempts at improving per-sketch efficiency (e.g., [17]), supporting P4 code com-

position [48, 49, 70, 90, 109], elastically trading of resource vs. accuracy (e.g., [16, 80]), and

improving the generality of sketches (e.g., [22, 34, 71, 106]), we find that these fundamentally fall

short of efficiently supporting a general ensemble of sketch instances without sacrificing accuracy.

(We elaborate on this in §4.1).

Given the limitations of existing approaches for the sketch ensemble, we present Sketchovsky

(sketch + Tchaikovsky), a composition framework that takes the input of sketch codes for the en-

semble and outputs an optimized sketch code by leveraging cross-sketch optimizations (Fig. 4.1).

Sketchovsky is complementary to the above efforts to build more efficient single-sketch algorithms

or developing more general-purpose sketches or explicitly trading off resource reduction for accu-

racy reduction. Indeed, using Sketchovsky can amplify their benefits to include more expressive

sketches (e.g., [71]) or extend per-sketch optimizations (e.g., [17]).

The design of Sketchovsky makes three key contributions:

Optimization building blocks (§4.3): We observe that sketching algorithms have three common

workflow steps: hash computations, counter updates, and heavy flowkey storage. We identify and

formalize five novel cross-sketch optimization building blocks to reuse key hardware resources

across sketch instances in each step. For hash computations, we show how and when (1) hash

results can be reused across sketch instances or (2) can be reconstructed by cheap XOR operations.

In the counter updates step, we discuss how (3) counter arrays can be reused or (4) can be co-

located to reduce memory accesses. In heavy flowkey storage, we discuss (5) a novel mechanism

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 48

1 packetStream
2 .map(p => (p.sIP, p.pktlen))
3 .reduce(keys=(sIP,), f=sum)
4 .filter((sIP, count) => count > Th)

Query 4.2: Heavy hitters detection of srcIP written in Sonata [52]

to reuse the heavy flowkey storage by using the union of all flowkeys for sketch instances in the

ensemble. Each optimization guarantees no accuracy loss.

Strategy finder (§4.4): Given an arbitrary sketch ensemble, there are many possible ways to

use and combine the above building blocks. Naively solving this problem is intractable due to

challenges in modeling resource usage and in identifying conflicts for combining optimizations,

as well as because of the combinatorially large search space (e.g., it takes more than a day to

solve). We identify practical relaxations to the problem and a greedy heuristic to make the problem

tractable to solve. We show that our approach can quickly identify (e.g., less than 1 second) an

effective strategy that yields significant benefit across various problem instances.

We demonstrate the utility and benefits of Sketchovsky over a wide range of settings and a

library of sketching algorithms that measure various statistics of interest [27, 32, 37, 43, 46, 47,

65, 66, 67, 71, 96]. Given this basic library, we consider an ensemble generator that uses a large

pool of candidate parameters to consider various types of ensembles. We use a combination of

benchmarks and trace-driven results [1] to measure accuracy results for running 36 sketch instances

grouped by four ensembles. Compared to the baseline of SketchLib, the resource reduction benefit

is at most for ensembles that have the same flowkey for all sketch instances by reducing 7∼40% of

the hash calls, 9∼45% of SALUs, and 0∼7% of SRAM. The benefit is at worst for ensembles that

sketching algorithms and parameters are picked randomly by reducing 3∼21% of the hash calls,

4∼26% of SALUs, and 0∼0.4% of SRAM.

4.1 Motivation

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 49

1 packetStream
2 .map(p => (p.sIP, p.dIP, p.sPort, p.dPort, p.Proto))
3 .distinct()

Query 4.3: Distinct number of 5-tuple flows written in Sonata [52]

4.1.1 Need for Ensemble of Sketch Instances

Network operators need to concurrently run diverse flow-level measurement tasks on programmable

switches because the more information operators can get about the network, the more they can

make the right management decisions [34, 52, 76, 83, 102, 105, 106, 110]. As concrete exam-

ples of measurement tasks, we show two network queries written by Sonata [52], a state-of-the-art

query language on programmable switches. Query. 4.2 can detect heavy hitters based on the sum

of packet length in bytes aggregated on flowkey of srcIP. Query. 4.3 measures the distinct number

of 5-tuple flows. Network operators want to concurrently run these measurement tasks as many as

possible.

Each such measurement task would entail creating a sketch instance based on a base sketch-

ing algorithm (SA) with four configurable parameters: (1) Flowkey is any combination of packet

header fields (e.g., srcIP or 5-tuple); (2) Flowsize defines whether the sketch instance keeps track

of packet counts or packet bytes; (3) Epoch is the measurement time interval; and (4) Resource

Parameters configure the memory size (e.g., W and R of 2D counter arrays). The network op-

erator should choose resource parameters carefully because there is a trade-off between resource

usage and accuracy.

For instance, given Query. 4.2 above, we can use a count-min sketch instance on the srcIP as

flowkey and for Query. 4.3 we may use HyperLogLog on the 5-tuple. More generally, given the

collection of measurement tasks with different configurable parameters (flowkey, flowsize, epoch)

and statistics, we will need to concurrently run an ensemble of sketch instances in practice. For our

work, we assume that the ensemble of sketch instances is given as input; the problem of finding

the best ensemble of sketch instances given a collection of measurement tasks is outside the scope

of this paper (§4.7).

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 50

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Res. Param.

s1 CM (srcIP) counts 10s (3, 1024)
s2 CM (dstIP) bytes 10s (5, 2048)
s3 KARY (srcIP, dstIP) counts 10s (4, 4096)
s4 HLL (srcIP, srcPort) - 5min (1, 2048)
s5 UM (5-tuple) counts 5min (3, 2048, 16)

Table 4.1: An example of an ensemble of sketch instances. For resource parameters, (R, W) for single-level and (R, W ,
level) for multi-level sketching algorithms.

Solution General Resource Accuracy

P4 Composition [48, 49, 70, 90, 109] � X �
Per-sketch optimizations [17] � X �
More expressive sketches
[22, 34, 71, 106] X � �

Dynamic resource allocation at
compile time [16, 80] � � X

Dynamic resource allocation at
run time [108] X X �

Sketchovsky (Our system) � � �

Table 4.2: Existing efforts cannot support a general ensemble of measurement tasks with low resource footprint and high
accuracy

4.1.2 Prior Work and Limitations

We discuss some existing efforts in sketch-based telemetry on programmable switches and why

they are insufficient to tackle the ensemble of sketch instances problem.

Composing P4 programs. Many P4 code composition works have been recently published for

resource optimizations [48, 49, 70, 90, 109]. However, none of them can optimize the sketch

ensemble because they did not consider stateful processing, which is at the core functionality

of sketching algorithms (e.g., counter update step). P4visor [109], Lyra [48], and Cetus [70]

focus on optimizations for match-action tables, but they did not consider optimizations for stateful

processing, including MicroP4 [90]. Thus, they cannot be used to optimize an ensemble of sketch

instances.

Chipmunk [49] seems to be a promising candidate for providing cross-sketch optimizations

at first glance, since it compiles a program written by Domino language into optimized P4 code

with stateful processing optimizations. However, Chipmunk cannot compile a full single sketch

implementation due to its limited scope. It only supports the update part of the stateful value but

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 51

does not include the addressing part (e.g., computing hash functions to address the column index

of counter arrays), which is critical for sketch implementations.

Per-sketch optimizations. Per-sketch optimizations [17] can be used to implement the sketch en-

semble. However, this approach cannot achieve low resource footprints because linearly increasing

resource consumption is required as we run multiple sketch instances.

More expressive sketches. To make improvements, recent advances in sketching theory empower

a single sketch instance to support multiple measurement tasks [22, 34, 71, 106]. However, their

coverage of the measurement tasks is still far from general (e.g., none of them can support two

entropy estimation tasks for two different flowkey definitions).

Dynamic resource allocation. SCREAM [80] dynamically reduces resource parameters of sketch

instances to meet specified minimum accuracy when there are variations in traffic. However,

SCREAM will not work when there is low traffic variance. P4All [16] can elastically reduce

resource allocation of P4 applications with the table-like data structure. It can be used to reduce

resource parameters of some sketch instances in the ensemble by identifying lower-prioritized

sketch instances. However, P4All cannot handle cases where every sketch instance is equally im-

portant. Although these approaches of reducing resource parameters at compile time can achieve

low resource footprints, it also degrades accuracy. FlyMon [108] enables dynamic parameter con-

figuration at runtime (e.g., flowkeys and resource parameters). It essentially offers a time-sharing

capability to run a sketch ensemble by switching out active sketch instances. This approach is

orthogonal to running as many sketch instances concurrently as possible.

Quantitative results for existing efforts. We quantitatively show why existing efforts are in-

sufficient. As a representative for per-sketch optimization (including expressive sketches), we use

SketchLib. As an exemplar for dynamic/elastic resource sharing, we use P4All. Fig. 4.4 shows the

feasibility-accuracy trade-off between per-sketch optimization (SketchLib) and dynamic resource

allocation (P4All). To create ensembles, we use sketch instances of the count-min sketch with

(R,W) = (5,8K), flowkey of 4-tuple, different measurement epochs, and flowsize definitions.

Then we measure resource footprint and accuracy results using CAIDA traces [1]. We can see that

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 52

1 2 3 4 5 6 7

Number of Sketch Instances in Ensemble

0

50

100

150

R
es

ou
rc

e
U

se
(%

) SketchLib

Pipeline Stages

SALUs

Hash Units

SRAM

1 2 3 4 5 6 7
0

50

100

150
P4All

1 2 3 4 5 6 7

2

4

6

8

E
ns

en
bl

e
E

rr
or

(%
) Accuracy Result

SketchLib

P4All

Figure 4.4: Existing efforts cannot efficiently run the ensemble

SketchLib cannot support more than four sketch instances. While P4All can support ≥ four sketch

instances by reducing hardware resources, it can only do so by reducing accuracy. 1 In summary,

we find that while existing techniques are valuable, they fall short of our goal.

4.2 Sketchovsky Overview

Given that prior work is insufficient, we explore a complementary approach to identify and exploit

cross-sketch optimizations to run an ensemble of sketch instances S = {si}Ni=1. We envision that

our framework can coexist and amplify these existing efforts, since the values on their own are

insufficient.

To this end, we present Sketchovsky (Fig. 4.1), a novel cross-sketch optimization and com-

position framework. Sketchovsky identifies five cross-sketch optimization building blocks so that

resource consumption increases sub-linearly with guarantees of no accuracy loss. Sketchovsky de-

signs efficient heuristics to find an effective strategy to combine these building blocks for a given

ensemble and implements a module to automatically generates an optimized switch code.

Optimization building blocks (§4.3). We find that key hardware resources used in each work-

flow step of sketching algorithms can be reused across multiple sketch instances. We identify

five optimization building blocks to reduce resource footprint while maintaining accuracy. OHash1

and OHash2 optimize the first step of hash computations; OCtr1 and OCtr2 optimize the second
1P4All [7, 16] does not consider elastically reducing rows of counter arrays, which is directly related to feasibility due to a critical hardware

resource SALU. Thus, we use an objective function that treats all sketch instances equally given a constraint of maximum SALU to emulate P4All.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 53

step of counter updates, and OKey optimizes the third step of heavy flowkey storage. Note that

optimizations can be generalized to other hardware (§4.7). Each Oj has applicable conditions to

determine whether Oj can be applied to a subset of sketch instances S ⊂ S . Applicable conditions

are expressed by configurable parameters introduced in (§4.1.1) (e.g., all si ∈ S have the same

flowkey) and sketch features. The notion of sketch features captures the differences among differ-

ent sketching algorithms in algorithm designs or data structures (e.g., counter array type, counter

update type, or whether maintaining heavy flowkeys or not).

Strategy finder (§4.4). Among many valid strategies for applying five optimization building

blocks to different subsets of sketch instances in the ensemble, it is challenging to quickly find the

most effective strategy due to the intractably large search space. To solve this problem, we formu-

late an optimization problem by defining the objective function of hardware resources. Next, we

propose an idea of problem decomposition. We show that one large problem can be decomposed

into small sub-problems, and separate solutions for sub-problems together produce the overall so-

lution. To detect the validity of a strategy, the strategy finder takes inputs of sketch features (e.g.,

base sketching algorithm) and configurable parameters (e.g., flowkey and flowsize) for S as in

Table 4.1. Optimization building blocks can be applied to a subset S ⊂ S only if S satisfies the

applicable conditions.

4.3 Optimization Building Blocks

Given S = {si}Ni=1, we identify five cross-sketch optimization building blocks (two for hash, two

for counters, and one for flowkey storage) that can apply to a given set of sketch instances S =

{si}ni=1 ⊂ S . Table 4.3 summarizes relationships among workflow steps, optimizations and resource

reductions. For each optimization, we explain the key idea, the conditions under which it applies,

and its implications for resource use and accuracy. Table 4.4 summarizes applicable conditions to

validate whether each optimization can be applied to S ⊂ S .

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 54

Workflow Step Optimizations Reduction Overhead

Hash Hash-Reuse (OHash1) Hash call -
Computations Hash-XOR (OHash2) Hash call Pipe Stages

Counter SALU-Reuse (OCtr1) SALU,SRAM -
Updates SALU-Merge (OCtr2) SALU SRAM

Heavy Flowkey
Storage HFS-Reuse (OKey) SALU

Pipe Stages
CP Comp

Table 4.3: Relationships among workflow steps, optimizations and resource reductions. CP Comp means Control Plane
Computation, and Pipe Stages means Pipeline Stages.

Conditions OHash1 OHash2 OCtr1 OCtr2 OKey

Sketch Features
C1. Same counter array type � �
C2. Same counter update type �
C3. Track heavy flowkey �

Configurable Parameters
C4. Same flowkey definition � * � �
C5. Same flowsize definition �
C6. Same measurement epoch �

Table 4.4: Applicable conditions for five optimization building blocks

is reusing
hash results

𝑺 𝑭 𝑬

𝑠! 𝐴 3

𝑠" 𝐴 2

𝑠# 𝐴 1

ℎ!! 𝐴 ℎ!" 𝐴 ℎ!# 𝐴

ℎ"! 𝐴 ℎ"" 𝐴

ℎ#! 𝐴

∑ 𝑒$ = 6$ hash units

ℎ!! 𝐴 ℎ!" 𝐴 ℎ!# 𝐴

max%(e%) = 3 hash units

Figure 4.5: Hash-Reuse (OHash1) reduces hash calls by reusing hash results. A small box with hseed(flowkey) indicates
one hash call allocation.

4.3.1 Hash Computations

To optimize the workflow step of hash computations, we have two optimizations Hash-Reuse

(OHash1) and Hash-XOR (OHash2). Hash call refers to the hardware resource on programmable

switches to execute hash functions. Hash result is the outcome hash value of the hash call.

Hash-Reuse (OHash1) Reusing hash results. If a set of sketch instances use the same definition of

flowkey (e.g., srcIP), we can reuse hash results to reduce the usage of hash calls. We explain this

optimization using an example in Fig. 4.5. Assume we have a set of sketch instances S = {si}ni=1

with a required set of independent hash results E = {ei}ni=1 and flowkey definition F = {fi}ni=1,

which means that a sketch instance si needs ei number of hash results based on flowkey fi. Without

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 55

𝑺 𝑭 𝑬

𝑠! 𝐴 1

𝑠" 𝐵 2

𝑠# 𝐴, 𝐵 3 ℎ!" 𝐴, 𝐵 ℎ!# 𝐴, 𝐵 ℎ!! 𝐴, 𝐵

ℎ#" 𝐵 ℎ## 𝐵

ℎ"" 𝐴 ∑ 𝑒$ = 6$ hash units 4 hash units

ℎ!! 𝐴, 𝐵

ℎ#" 𝐵 ℎ## 𝐵

ℎ"" 𝐴

ℎ"" 𝐴 ⊕ ℎ## 𝐵ℎ"" 𝐴 ⊕ ℎ#" 𝐵

Figure 4.6: Hash-XOR (OHash2) reduces hash calls by using XOR

optimization,∑i ei hash calls are used. However, we can reuse hash results, and we can reduce the

allocation of hash calls to maxi(ei) on the hardware as in Fig. 4.5.

Applicability: Regardless of any sketching algorithms, we can apply this optimization as long as

S uses the same flowkeys. We denote this as (C4) in Table 4.4.

Implication: Allocation of maxi(ei) hash calls is sufficient to preserve the accuracy of S =

{si}ni=1. The accuracy of sketch instances is closely related to hash independence among hash

results. To implement hash independence in practice, randomly picked hash seeds are used;

hseed1(A) and hseed2(A) are independent if seed1 ≠ seed2. For a single sketch instance, hash

independence among hash results is required. A key insight here is that hash independence is not

required across sketch instances. Thus we can reuse maxi(ei) hash results across sketch instances

in a way that all hash results within any single sketch instance si are independent (e.g., in Fig. 4.5).

Hash-XOR (OHash2) Less hashing, same performance with XOR-based reconstruction. We

can reduce hash calls even for a set of sketch instances with different flowkeys by leveraging XOR

operations. We explain this optimization using an example in Fig. 4.6 where S = {s1, s2, s3} and

F = {{A},{B},{A,B}} and E = {1,2,3}. A and B are different packet headers, such as A =

srcIP and B = dstIP. We can reduce allocation of hash calls by reconstructing independent hash

results for s3 as follows because {A,B} = {A} ∪ {B}.

h31(A,B) = h11(A)⊕ h21(B) (4.1)

h32(A,B) = h11(A)⊕ h22(B) (4.2)

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 56

Note that XOR-based reconstructed hash results h31(A,B) and h32(A,B) are independent because

h21(B) and h22(B) are independent. For arbitrary e1 and e2, we can reconstruct e1×e2 independent

hash results for s3.

Applicability: This optimization Hash-XOR (OHash2) can be applied if S and F meet the follow-

ing condition.

For S ∈ S, ∣S∣ = 3 and f1 ∪ f2 = f3 (4.3)

This optimization can be applied as long as a set of sketch instances satisfies (4.3). Thus, we mark

(*) at (C4) in Table 4.4 for OHash2 .

Implications: This idea of XOR-based hash reconstruction is proven pairwise independent and

has already been used in other contexts [64, 93]. Thus, accuracy will not be compromised, which

is confirmed by our evaluation result. As a minor side effect, more pipeline stages might be needed

by adding XOR operations in the sketch workflow. However, we will see in the evaluation that the

impact of this overhead is small.

4.3.2 Counter Update

To optimize the second workflow step of counter updates, we have SALU-Reuse (OCtr1) and

SALU-Merge (OCtr2).

SALU-Reuse (OCtr1) Reusing counter arrays (rows) across sketch instances. If all sketch

instances in S meet certain applicable conditions, we can reuse counter arrays to reduce both

SALUs and SRAM. We first see how this optimization works by looking at an example in Fig. 4.7,

and we will describe applicable conditions later. Suppose S = {s1, s2, s3} satisfies applicable

conditions of OCtr1 and C = {(ri,wi)}ni=1 represent that si has ri number of counter arrays with

width wi. Then, instead of updating three different sets of counter arrays for three sketch instances

in the data plane, we can update only one set of counter arrays. Then, in the control plane, one

set of counter arrays can be used to compute statistics for all three sketch instances. The way we

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 57

+1

+1

+1

+1

+1

+1

+1

+1

+1 +1

+1

+1

+1

𝑤!

𝑤"
𝑤"

𝑤#

Counter Arrays
for 𝑠!

𝑟!

𝑤! 𝑤#

𝑟#

𝑤"
𝑟"

Counter Arrays
for 𝑠"

Counter Arrays
for 𝑠#

𝑾 = Counter Arrays
for 𝑠!, 𝑠", 𝑠#

(9 SALU, 25 SRAM) (4 SALU, 13 SRAM)

𝑟!

Figure 4.7: SALU-Reuse (OCtr1) reuses counter arrays

compute the row and width of counter arrays for reuse is represented by W:

W = {w∗
j }

maxi(ri)
j=1 where w∗

j = max
i

{wi∣ri ≥ j} (4.4)

W represents width w∗
j per j-th counter array for reuse. Note that W can have different widths

across counter arrays, and it does not affect the functionality of sketching algorithms. We can

see that W has maxi(ri) rows. Thus, we can reduce SALUs from ∑i ri to maxi(ri). Moreover,

SRAM usage is reduced from ∑i riwi to ∑j w
∗
j and we show ∑i riwi −∑j w

∗
j ≥ 0 in §B.2.1. While

the discussion focused on single-level sketch instances, the same idea also applies to multi-level

sketch instances.

Implication: If we compare resource parameters (ri,wi) of any sketch instance si to counter ar-

rays for reusing W, W has the same or larger width. As a result, all sketch instances are guaranteed

to achieve the same or improved accuracy.

Applicability: Applicable conditions for this optimization use two sketch features. The first

sketch feature is counter array type. Sketching algorithms have different types of counter arrays;

the single-level (SL) type has 2D counter arrays, and the multi-level (ML) type has multiple levels

of 2D counter arrays. The second sketch feature is counter update type. Sketching algorithms

have different ways of updating counters. It can be bitmaps (BITMAP) or integer counters that

only add values (COUNTER). Refer §B.1.1 for a full list of five counter update types. S ⊂ S must

satisfy five conditions to apply this optimization (Table 4.4): the same counter array type, the same

counter update type, the same flowkey, the same flowsize, and the same epoch (C1, C2, C4, C5,

C6).

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 58

+1SALU
+1SALU

+1SALU
+1SALU

+1

+1SALU
+1

+1SALU

is SRAM overhead

Counter Arrays for 𝑠!

Counter Arrays for 𝑠"

(4 SALU, 12 SRAM) (2 SALU, 16 SRAM)
𝑤!

𝑤"

𝑤!
Counter Arrays for 𝑠!

Counter Arrays for 𝑠"

𝑤!

Figure 4.8: SALU-Merge (OCtr2) reduces SALUs by making SALUs update two counter arrays simultaneously

SALU-Merge (OCtr2). Combining two counter updates into one SALU allocation. Leveraging

the full capability of the underlying hardware resources can help resource reduction of S. We

observe that SALU can update two registers addressed in the same index and we can leverage this

feature to update two counter arrays simultaneously. As a result, we can reduce SALUs by up to

2x. We explain this optimization by using an example in Fig. 4.8. We have two sketch instances

with two counter arrays each, and we originally needed four SALUs. Then, we can make SALUs

update two counter arrays simultaneously and reduce SALUs from 4 to 2.

We find two rules in the Tofino switch for a SALU to update two counter arrays. (R1) derives

applicable conditions, and (R2) incurs SRAM overhead.

● (R1) Column indexes for counter updates are the same

● (R2) Two counter arrays have the same width

Applicability: (R1) derives two applicable conditions (C1, C4). If sketch instances use the same

counter array type (C1) (e.g., sketch instances are either all single-level or all multi-level) and

use the same definition of flowkey (C4), we can apply this optimization. Because the flowkeys

are the same, we can leverage Hash-Reuse (OHash1), and SALU can update two counter arrays

using the reused hash result for the column index. However, if the flowkeys are different, then

column indexes for the counter update can not be the same, which will violate (R1). Note that

we should not let SALU update two counter arrays within a sketch instance, because updating the

same column index will lose hash independence and degrade accuracy.

Implication: This optimization can incur the additional SRAM overhead due to (R2). Suppose

we have two sketch instances {s1, s2} with two counter arrays each as in Fig. 4.8 with width of

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 59

{w1,w2} s.t. w1 > w2. Suppose we can apply the optimization to {s1, s2}. Then, we should pick

the longer width w1 for counter arrays to preserve the accuracy of both {s1, s2}. As a result, the

accuracy will be maintained (e.g., for s1) or improved (e.g., for s2). However, this will incur an

SRAM overhead of w2 −w1 for s2, as marked in Fig. 4.8. Despite the SRAM overhead, we argue

that this optimization is still effective and practical for three reasons. First, increased SRAM is not

wasted but will improve accuracy. Second, the SRAM overhead is bounded by 2x. Third, SRAM

is not the imminent bottleneck as we will see in the evaluation.

4.3.3 Heavy Flowkey Storage

To optimize the third workflow step of heavy flowkey storage, we have one optimization HFS-

Reuse (OKey).

HFS-Reuse (OKey). Reusing heavy flowkey storage across sketch instances. We can reduce

SALU usage by reusing heavy flowkey storage across sketch instances. If multiple sketch instances

have the same definition of flowkey (e.g., srcIP), we can store heavy flowkey in one heavy flowkey

storage to save SALUs. We can generalize this idea to sketch instances with different definitions

of flowkey using the notion of union-key. Suppose we have two sketch instances S = {s1, s2} with

two different flowkey definitions F ={{srcIP}, {dstIP}}. Then, instead of maintaining two heavy

flowkey storage, we use one flowkey storage using union-key of {srcIP, dstIP} where union-key

can be computed by (UK = ∪ifi). Then, for a given packet, if either {srcIP} is identified as a

heavy flowkey for s1 or {dstIP} is identified as a heavy flowkey for s2. We store {srcIP, dstIP} of

the given packet in the heavy flowkey storage.

We can do a further optimization to reduce memory usage of heavy flowkey storage. Suppose

S = {s1, s2} and F ={{srcIP}, {dstIP}}. For a given packet, if {srcIP} is identified as a heavy

flowkey whereas {dstIP} is not, we store {srcIP, 0} so that the control plane knows this flowkey

is only for s1. To generalize this idea to multiple sketch instances, we can compute a conditional

union-key UKC = ∪jfjwhere (flow size estimate)j > thresholdj and set 0 to (UK − UKC) when

we store heavy flowkey into the storage.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 60

Applicability: We can apply this optimization to a set of sketch instances S if all sketch instances

in S tracks heavy flowkeys (C3) as in Table 4.4. For different measurement epochs, we can com-

pute the greatest common denominator (GCD) among all epochs, and the control plane can retrieve

heavy flowkeys every time period of GCD. For example, if there are sketch instances with 10s, 20s,

and 30s measurement epochs, the control plane retrieves heavy flowkeys for every 10s, and we can

reconstruct heavy flowkeys for sketch instances of 20s and 30s.

Implication: By storing fine-grained heavy flowkeys by union-key, the control plane can re-

trieve heavy flowkeys for individual sketch instances by aggregation without missing any heavy

flowkeys. This optimization incurs small additional computations on the switch control plane.

However, this overhead does not affect the overall performance because this control plane com-

putation is not on the critical path to provide measurement results. While the switch data plane

updates the counter arrays, the switch control plane can independently execute heavy flowkey ag-

gregation on the CPU. Another small overhead of the pipeline stage can occur, but we will see in

the evaluation that the impact is small.

4.4 Strategy Finder

In the previous section, we proposed five optimizations {Oj}j∈{Hash1,Hash2,Ctr1,Ctr2,Key} and their

applicable conditions to a subset of sketch instances S = {si}ni=1 ⊂ S . In this section, we aim to

develop a strategy finder that partitions S into the best applicable subsets so that five optimization

building blocks can produce the maximum benefit for any given ensemble S .

4.4.1 Problem Formulation

We formulate an optimization problem to find the optimal strategy. We consider partitions of S

because each optimization Oj is applied to disjoint subsets of S . Suppose PS = {Pk∣Pk is kth

partition of the set S} is a set containing all partitions of the set S where Pk = {Sl ⊂ S ∣⊍l Sl = S}.

The goal is to find the optimal strategy X∗, which minimizes hardware resources while satisfying

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 61

the applicable conditions:

min
X

HW_Resource(X) (4.5)

s.t.
∣PS ∣
∑
k=1

xjk = 1,∀j ∈ {Hash1,Hash2,Ctr1,Ctr2,Key} (4.6)

Applicable(X) = 1 (4.7)

The decision variable is X = {Xj}j∈{Hash1,Hash2,Ctr1,Ctr2,Key}. Xj selects a partition Pk ∈ PS

for Oj so that Oj is applied to all subsets ∈ Pk. To express this, we define Xj = {xjk∣xjk ∈

{0,1}}k∈{1,...,∣PS ∣} and xjk = 1 if Pk is selected. Note that (4.6) makes Xj pick only one partition

Pk for Oj .

About constraint (4.7), we use Applicable(X) ∈ {0,1} to denote whether strategy X is valid or

not. X is valid if all subsets ∈ Pk satisfy the applicable conditions of Oj for ∀ j. It is assumed that

applicable conditions are met for the subset S ⊂ S containing a single sketch instance s.t. ∣S∣ = 1.

For objective function (4.5), we aim to find a strategy X∗ that minimizes hardware resource

HW_Resource(X) among all valid strategies X . To model this objective function, we use the

linear combination of four key resource usage:

LinearComb(X,R) =∑
r∈R

ar ⋅ resourcer(X) (4.8)

R = {SALU, HashUnit, SRAM, PipelineStage} (4.9)

Network operators can use (4.8) and customize the objective function by choosing different coef-

ficient sets {ar}r∈R for their preference. For example, suppose network operators desire to reduce

SRAM more than other resources to run the ensemble with memory-intensive applications, they

can increase the weight for aSRAM in the objective function.

4.4.2 Challenges

We face three challenges in formulating and solving the optimization problem.

C-1. Large search space. We have a large search space for enumeration because the number of

possible partition ∣PS ∣ increases exponentially as the number of sketch instances ∣S ∣ increases [21].

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 62

Even after we consider constraint (4.6), the decision variable X has ∣PS ∣5 combinations because X

selects five partitions among PS . This large search space makes finding the optimal solution X∗

become intractable.

C-2. Modeling the applicable function. It is hard to define Applicable(X) due to the depen-

dencies among optimizations. Specifically, there exist dependencies between Ow1 and Ow2 for

w ∈ {Hash,Ctr} because they are applied to the same workflow steps. Thus, it is unclear whether

a sketch instance si can be benefited from Ow1 and Ow2 at the same time. Further, if they can, then

it is also unclear how to figure out the relationship between Xw1 and Xw2 to detect the validity of

X to define Applicable(X).

C-3. Modeling the objective function. We find that computing LinearComb(X,R) takes a long

time because accurately measuring pipeline stage usage requires the compilation of an optimized

P4 code by applying strategy X . The execution time for resourcepipeline_stage(X) can take several

minutes. This delay will significantly impede the search process, and finding a solution X∗ can

become even more intractable.

4.4.3 Our Approach

Next, we reformulate the problem and show that finding the optimal strategies for each Oj will

create the overall solution X∗. This reduces search space significantly and makes the problem

tractable.

Excluding pipeline stage from the objective function. To tackle (C-3), we make a prag-

matic choice of excluding the pipeline stage from the objective function. Specifically, we use

LinearComb(X,R′) as objective function where R′ = {SALU, HashUnit, SRAM}.

LinearComb(X,R′) can be easily realized because resourcer(X) for r ∈ R′ can be quickly

computed becauseX contains information about the number of reused or XOR-reconstructed hash

calls, reused or co-located counter arrays, and reused heavy flowkey storage. While this loses

generality in the objective, we argue this is practical because there is a correlation between the

resource reduction of R′ and the pipeline stage reduction.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 63

Search space decomposition across workflow steps. To overcome the challenge of large search

space (C-1), we can decompose the optimization problem into three sub-problems, and solution

X∗ can be achieved by solving sub-problems separately. Specifically, we decompose the decision

variable X into three groups corresponding to three workflow steps:

XHash = {XHash1,XHash2},XCtr = {XCtr1,XCtr2},XKEY = {XKey}

Then, we can also decompose the applicable function and the objective function as follows:

X = ∪w∈{Hash,Ctr,KEY }Xw (4.10)

Applicable(X) = ∏
w∈{Hash,Ctr,KEY }

Applicable(Xw) (4.11)

HW_Resource(X) = ∑
w∈{Hash,Ctr,KEY }

HW_Resource(Xw) (4.12)

This problem decomposition is possible for two reasons. First, although there are dependencies

in terms of applicability within Xw, there are no dependencies across Xw because optimizations

are independently applied to different workflow steps. Thus, Applicable(X) can be achieved by

multiplication of decomposed Applicable(Xw) as in (4.11). Second, HW_Resource(X) can be

achieved by summation of decomposed HW_Resource(Xw) as in (4.12). Without the idea of

excluding pipeline stage usage, this linearity property (4.12) does not hold because measuring

pipeline stage usage must consider the overall table dependency graph (TDG) among workflow

steps (Xw). As a result, a solution X∗ can be achieved by X∗ = {X∗
Hash,X

∗
Ctr,X

∗
KEY } where X∗

w

is a solution of each sub-problem for w ∈ {Hash,Ctr,KEY } as follows:

min
Xw

HW_Resource(Xw) s.t. Applicable(Xw) = 1 (4.13)

Two-step enumeration for XHash and XCtr. Although we can decompose Applicable(X)

into three Applicable(Xw) as in (4.11), it is still unclear how to realize Applicable(Xw) for

w ∈ {Hash,Ctr} because there exist dependencies between Ow1 and Ow2. We can solve this

problem using an enumeration technique that efficiently explores the search space. Suppose the

enumeration does not miss out on valid Xw (s.t. Applicable(Xw) = 1) while efficiently skips in-

valid Xw. In that case, it will help to solve not only the challenge (C-2) of modeling an applicable

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 64

Algorithm 1 TwoStepEnumeration
1: procedure TWOSTEPENUMERATION(S,w)
2: PS = {Pk ∣Pk is kth partition of the set S}
3: min← INT_MAX
4: for Xw1 s.t. selected Pw1 ∈ PS is valid do
5: for Xw2 s.t. Pw1 ≤ Pw2 ∈ PS do
6: Xw ← {Xw1,Xw2}

7: Pw12 = NESTEDPARTITION(Pw1, Pw2)
8: if Pw12 is valid then
9: if min >HW_Resource(Xw) then

10: min←HW_Resource(Xw)

11: X∗

w ←Xw

12: return X∗

w

function but also the challenge (C-1) by reducing search space. To achieve this, we develop a

two-step enumeration technique as in Alg. 1.

We explain this algorithm by both cases of w ∈ {Hash,Ctr}. Let’s first see an example for w =

Hash, Hash-Reuse (OHash1) and Hash-XOR (OHash2). Suppose we have five sketch instances S =

{si}5
i=1 with flowkey definition F = {{srcIP},{srcIP},{dstIP},{srcIP, dstIP},{srcPort}}.

Then the algorithm enumerates all valid Pw1 at line 4 in Alg. 1. Pw1 = {{s1, s2},{s3},{s4},{s5}}

can be picked because {s1, s2} have the same flowkey so that we can reuse hash results to reduce

hash calls. Next, given picked Pw1, it enumerates Pw2 s.t. Pw1 ≤ Pw2
2 to create nested partition

Pw12 using Pw1 and Pw2. If Pw2 = {{s1, s2, s3, s4},{s5}} is picked, then the nested partition is

Pw12 = {{{s1, s2},{s3},{s4}},{{s5}}}. To see the validity of Pw12, check whether all subsets

in Pw12 satisfy applicable conditions of OHash2 at line 8. Picked Pw12 is valid because subset

S = {{s1, s2},{s3},{s4}} ∈ Pw12 satisfies applicable conditions of ∣S∣ = 3 and {srcIP} ∪ {dstIP} =

{srcIP, dstIP} as in (4.3) at §4.3.1. Note that {s1, s2} is handled as if it is a single sketch instance

with a flowkey of {srcIP}.

Interestingly, the same algorithm works for w = Ctr, SALU-Reuse (OCtr1) and SALU-Merge

(OCtr2). First, the algorithm enumerates Pw1 where all subsets in Pw1 satisfy applicable conditions

(C1, C2, C4, C5, C6) of OCtr1 . For picked Pw1, OCtr1 is applied to all subsets ∈ Pw1, meaning that

each subset has one set of counter arrays for reuse W as discussed as in (4.3) at §4.3.2. Then each

subset can be handled as if it is a single sketch instance with counter arrays configured with W.
2If every element of partition Pw1 is a subset of some element of partition Pw2, then Pw1 ≤ Pw2. In other words, Pw1 is finer and Pw2 is

coarser.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 65

Next, we can detect the validity of nested partition Pw12 using the applicable conditions (C1, C4)

of OCtr2 at line 8 in Alg. 1.

HFS-Reuse (OKey) does not need this two-step enumeration. The solution for OKey is one

subset S containing all sketch instances that track heavy flowkey because this will minimize the

hardware resource usage.

Search space decomposition within workflow steps. Although two-step enumeration reduces

search space by picking Pw1 first and then Pw2 such that Pw1 ≤ Pw2, this enumeration technique

still takes a long time to finish (e.g., more than a day). To this end, we come up with an idea to

decompose Xw1 and Xw2 by using a greedy heuristic algorithm. Instead of running a nested loop

(lines 4-5 in Alg. 1) for finding Pw1 and Pw2, we can first find the optimal P ∗
w1 given S and then

finds P ∗
w2 based on already picked P ∗

w1. This greedy heuristic algorithm decomposes the search

space of {Xw1,Xw2} into separate {Xw1} and {Xw2}.

The insight behind this greedy heuristic algorithm comes from the applicability-benefit trade-

off between Ow1 and Ow2. Ow1 is more difficult to apply but has a high resource reduction benefit.

Ow2 is easier to apply but has a low resource benefit. Thus, it makes sense that the algorithm first

applies Ow1 as much as possible, then next applies Ow2. We can not prove whether this greedy

heuristic algorithm can find the same or close solution compared to the two-step enumeration.

However, we empirically show that the overhead of objective function increase is small (e.g.,

less than 2%) while solving time of the greedy heuristic algorithm is more than three orders of

magnitude faster (§4.6.4).

4.5 Implementation

4.5.1 Strategy Finder

One minor issue here is that while implementing SALU-Merge (OCtr2) on the Tofino switch, we

face the known problem of sketch inaccuracy, which is caused by the counter read and reset de-

lays [82]. To address this, we add one more applicable condition of the same epoch (C6) to OCtr2 .

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 66

4.6 Evaluation

We performed an extensive set of experiments that demonstrate that Sketchovsky can achieve low

resource footprint and high accuracy at the same time. This evaluation is based on the auto-code

composition framework, which will be introduced in the next chapter (chapter 5).

4.6.1 Experimental Setup

Testbed. We evaluate Sketchovsky on a local testbed with an Edgecore Wedge 100BF Tofino-

based programmable switch and a server equipped with dual Intel Xeon Silver 4110 CPUs, 128GB

RAM, and a 100Gbps Mellanox CX-4 NIC connected to the switch. We use the P4-16 version with

the Tofino SDE version of 9.5.1.

Sketching algorithms. We use eleven sketch algorithms that measure six different statistics.3

Although Bloom filter (BF) is not a sketching algorithm, we include BF because it also follows the

workflow steps of sketching algorithms, and Sketchovsky can optimize it.

Four ensemble types. We use four types of ensembles that network operators would practically

consider using practically. In ensembles of (Type 1. Same Sketch), (Type 2. Same Flowkey), and

(Type 3. Same Epoch), all sketch instances in the ensemble use the same sketching algorithm,

flowkey, and epoch, respectively. For (Type 4. Random), sketch instances in an ensemble are

picked randomly.

Ensemble Generator. To create four types of ensembles, we build an ensemble generator that

takes two inputs: (1) the ensemble type and (2) the number of sketch instances for the ensemble.

Using these two inputs, the ensemble generator randomly picks sketching algorithms and assigns

configurable parameters from a large pool of candidates. A full list of candidates for parameters

is in §B.3.1. The ensemble generator does not allow any two sketch instances in an ensemble to

have the same statistic, flowkey, flowsize, and epoch.
3Linear counting (LC) [96], HyperLogLog (HLL) [47], PCSA [46], multi-resolution bitmap (MRB) [43] measure cardinality. Count-sketch

(CS) [32], count-min sketch (CM) [37] can detect heavy hitters, and K-ary sketch (KARY) [65] can detect heavy change. Entropy sketch (ENT) [67]
measures entropy, MRAC [66] measures flow size distribution (FSD). UnivMon (UM) [71] can measure general statistics. Bloom filter (BF) [27]
can do the membership test. A full list of sketching algorithms with sketch features is in §B.3.1.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 67

LC(1) HLL(4) PCSA(3) MRB(4)
0
1
2
3
4

R
E

(%
)

Cardinalitybefore
after

MRAC(4)
0.2

0.4

0.6

0.8

W
M

R
D

Flow Size Dist

CS(2)
0

1

2

3
A

R
E

(%
)

CM(7)
0

2

4

6

HeavyHitter, HeavyChange

KARY(1)
0

5

10

15

ENT(6)
0

10
20
30
40

R
E

(%
)

Entropy

UM(2)
0
4
8

12
16

Figure 4.9: Overall accuracy evaluation

Metrics. We use three metrics for accuracy: (1) Relative Error (RE): ∣True−Estimate ∣
True , where True

is the ground truth value and Estimate is the estimated value. We use this metric for sketching

algorithms for cardinality and entropy. (2) Average Relative Error (ARE): 1
k ∑

k
i=1

∣fi−f̂i∣
fi

, where k

means the top k heavy flows. fi is the actual flow size for flow i, and f̂i is the estimated flow

size from the sketch instances. This metric is used to evaluate the accuracy of the heavy hitter and

heavy change detection. We use k=50. (3) Weighted Mean Relative Difference (WMRD) is used

for MRAC [66].

For resource reduction, we use two metrics: (1) Resource Usage (RU): Used
Available , where Used

is the amount of resource used for the ensemble and Available is the total amount of available

resource on the switch; and (2) Resource Reduction (RR): RU (before)−RU (after)
RU (before) , whereRU(before)

is the amount of used resource before applying optimizations of Sketchovsky and RU(after) is

the amount of used resource after optimization.

4.6.2 Accuracy

We show that Sketchovsky does not degrade, and actually somtimes improves, accuracy. For

this experiment, we picked four ensembles from each ensemble type. A full list of base sketch

algorithms and configurable parameters for picked ensembles is in §B.3.2. Given each ensemble as

input, we generate sketch P4 codes for the Tofino switch both before and after we use Sketchovsky

for optimization. All five optimizations are enabled. We then run sketch P4 codes for (four picked

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 68

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 1. Same Sketch Algo

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 2. Same Flowkey

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10
N

um
b

er
of

F
ea

si
bl

e
E

ns
em

bl
es

Ensemble Type 3. Same Epoch

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 4. Random

after
before

Figure 4.10: Feasibility comparison of ensembles before vs after

ensembles) × (before and after optimizations) on the Tofino switch and compare the accuracy of

the sketch instances. We use five traffic workloads of inter-ISP packet traces collected on different

dates. 4 For each traffic workload, we send ten 60s packet traces from a directly connected server

to the Tofino switch using tcpreplay at full speed.

Fig. 4.9 shows the overall accuracy results. We grouped sketch instances into four different

statistics based on the sketching algorithm used. The X-axis in Fig. 4.9 shows the number of

sketch instances with the same sketching algorithm (e.g., HLL(4) means there are four sketch

instances using the sketching algorithm of HLL). The Y-axis shows the quartiles of errors for

sketch instances. We see that none of the sketch instances lose accuracy after optimization. In fact,

we observe some accuracy improvements; thanks to OCtr1 , counter arrays of KARY are increased

from 1 to 3, and the error is reduced significantly. OCtr2 is applied to one of the PCSA, MRAC,

and ENT sketch instances, and the error is also reduced. In addition, we do not miss any heavy

flowkeys both before and after optimization. Because BF does not produce measurement results,

the accuracy result for two BF sketch instances is not shown.

4.6.3 Resource Reduction

Sketchovsky makes infeasible ensembles feasible. We show that using Sketchovsky incurs

several resource reduction benefits. For this experiment, we generate a total of 400 ensembles of
4We use five CAIDA backbone traces captured in 3/20/14 Sanjose, 6/19/14 Sanjose, 1/21/16 Chicago, 5/17/18 NYC, and 8/16/18 NYC [1]

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 69

T1 Same Sketch T2 Same Flowkey T3 Same Epoch T4 Random
0

50

100

150

200

R
U

(%
)

Before Hash Unit

After Hash Unit

Before SALU

After SALU

Before SRAM

After SRAM

Figure 4.11: Resource usage comparison before vs after for the number of sketch instances = 12.

sketch instances; (four ensemble types) × (10 different numbers of sketch instances from 2, 4, ...,

20) × (10 different ensembles). We use count-min sketches to create ensembles for (Ensemble

Type 1) because it is one of the most popular and widely-used sketching algorithms. Then, we run

Sketchovsky to produce 400 sketch P4 codes both before and after optimization. Next, we compile

the codes using the Tofino compiler to check the feasibility. To make the experiment more realistic,

we append codes for L2 switching, L3 routing, and access control list (ACL) to all of the before

and after optimization codes. L2 and ACL consume 55% of on-switch SRAM in total, and L3 uses

63% of TCAM.

The X-axis in Fig. 4.10 is the number of sketch instances in the ensemble. The Y-axis is the

number of feasible ensembles among ten ensembles per different number of sketch instances. The

result shows that 42 ensembles that were previously infeasible become feasible with Sketchovsky.

For example, if we look at (Ensemble Type 1) and (8 sketch instances), all ten ensembles were

infeasible before optimization. However, 4 out of 10 ensembles become feasible after optimiza-

tion. We can also see that the pipeline stage overhead that OHash2 and OKey can cause does not

negatively impact feasibility after applying them.

Resource usage before and after optimization. Fig. 4.11 shows the use of individual resources

before and after optimization. Using the ensemble generator, we generated 1200 ensembles; (four

ensemble types) × (300 different ensembles). Each ensemble has 12 sketch instances. Because

some ensembles are not feasible on the Tofino switch because of the limited number of stages, we

calculated resource use using the strategy finder so we are not limited by, and do not show, pipeline

stages. We cross-checked the resource use between the strategy finder and the Tofino compiler for

feasible ensembles. Each bar in Fig. 4.11 shows the median value, and the error line shows the 10%

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 70

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40
50

R
R

(%
)

Hash Unit

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40
50

R
R

(%
)

SALU

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40

R
R

(%
)

SRAM
T1

T2

T3

T4

Figure 4.12: Resource reduction result

and 90% percentile among 300 ensembles. The red-dotted line shows the total available resources

on the switch, so values above the red line represent infeasible ensembles. Fig. 4.11 visually shows

how previously infeasible ensembles become feasible.

Sensitivity analysis on the number of sketch instances. We show a more detailed view of

resource reduction by looking at ensembles with different numbers of sketch instances. We gen-

erate (four ensemble types) × (12 different numbers of sketch instances from 2, 4, ..., 24) × (300

different ensembles). The X-axis of Fig. 4.12 is the number of sketch instances, and the Y-axis

is the average reduction for the three resource types of 300 ensembles between before and after

optimization. We can see that hash call reduction is up to 40%, SALU reduction is up to 45%,

and SRAM reduction is up to 7%. As the ensemble has more sketch instances, we have more

opportunities to apply optimizations, and resource reduction benefits increase. SRAM reduction is

more limited, but we do observe SRAM reduction for type 2 due to OCtr1 because reusing counter

arrays can reduce SRAM.

Fig. 4.12 also shows that the resource reduction depends on the ensemble type. Ensemble

type 2 has sketch instances with the same flowkey, which makes many optimizations easier to

apply. Thus, ensemble type 2 has the highest resource reduction. On the other hand, type 4

has random sketch instances, so optimizations are the least likely to be applied, resulting in the

smallest resource reduction. However, even for random ensemble type, the reduction of the hash

call is up to 20% and SALU is up to 26% because Sketchovsky offers five multiple building blocks

for optimization.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 71

Resources Total OHash1 OHash2 OCtr1 OCtr2 OKey

Type 1 Hash Unit 21.3 3.1 0.1 18.1
Same SALU 25.7 - 0.8 24.9
Sketch SRAM -0.02 - -0.02

Type 2 Hash Unit 27.6 10.4 - 17.2
Same SALU 33.1 3.8 5.9 23.4

Flowkey SRAM 1.8 2.3 -0.5

Type 3 Hash Unit 18.9 5.5 0.04 13.4
Same SALU 24.7 2.2 3.7 18.8
Epoch SRAM 0.9 1.3 -0.4

Type 4 Hash Unit 15.5 1.9 0.04 13.6
Random SALU 20.4 0.5 1.0 18.9

SRAM 0.2 0.3 -0.1

Table 4.5: Breakdown of resource reduction by each optimization for the number of sketch instances = 12.

Breakdown on individual optimizations. We zoom into ensembles with 12 sketch instances and

show the breakdown of resource reduction in Table 4.5. HFS-Reuse (OKey) shows consistently

high resource reduction for all four ensemble types (18% to 25% SALU reduction). Note thatOKey

can also reduce hash calls. This is because of the specific hardware architecture of Tofino; one hash

call must be allocated for one SALU (now we call this HashUnit-SALU coupling). Hash-Reuse

(OHash1) is the next impactful optimization. For type 2, OHash1 reduces hash calls by up to 10.4%.

SALU-Reuse (OCtr1) reduces both SALU and SRAM and SALU-Merge (OCtr2) reduces SALUs

but increases small SRAM overhead (negative values such as -0.5%). Finally, Hash-XOR (OHash2)

has the least impact on Tofino because of HashUnit-SALU coupling. Note that the application of

OCtr1 and OCtr2 enables OHash1 automatically. Thus the impact of OCtr1 and OCtr2 is bigger than

shown in Table 4.5.

4.6.4 Experiment for Greedy Heuristic Algorithm

In the strategy finder section (§4.4), we propose the use of greedy heuristic algorithm to tackle the

problem of large search space. Here we show that the performance loss of the greedy heuristic

algorithm is small while solving time is three orders of magnitude faster.

Metric. We introduce two metrics for this experiment.

● Solving Time: time to find the solution.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 72

4 8 12 16 20 24

10−1
101
103

S
ol

vi
ng

T
im

e
(s

)

(TSE) T1
(TSE) T2
(TSE) T3
(TSE) T4

(GHA) T1
(GHA) T2
(GHA) T3
(GHA) T4

((a)) Solving Time

4 8 12 16 20 24
0

1

2

3

4

5

O
bj

ec
ti

ve
F

un
ct

io
n

In
cr

ea
se

(%
) T1 Same Sketch

T2 Same Flowkey

T3 Same Epoch

T4 Random

((b)) Performance on Reduction

Figure 4.13: Two-step enumeration (TSE) vs greedy heuristic algorithm (GHA)

● Objective Function Increase: HW _Resource(XG)
HW _Resource(XT) where XT is a found solution using the two-step

enumeration and XG is from the greedy heuristic algorithm.

We can see in Fig. 4.13(a) that the greedy heuristic algorithm is three orders of magnitude faster

than two-step enumeration. However, the objective function increase is less than 2% (Fig. 4.13(b)).

For solving time, we measure time for 300 ensembles per data point in Fig. 4.13(a) and show the

worst solving time. Data points that take more than 24 hours are not shown.

4.7 Discussion

Measurement-sketch mapping. We currently assume the ensemble of sketch instances is given

as input. An interesting direction for future work is to automatically generate the most efficient

ensemble of sketch instances for a given set of measurement tasks. We posit that using Sketchovsky

to explicitly consider the characteristic of input workload and the resource-accuracy trade-off in

an ensemble setting could be an interesting direction for future work [75, 102].

Generalizing to other hardwares. While our prototype uses Tofino due to its open development

API, we posit that our optimization building blocks and strategy algorithm can be generalized to

other programmable switches and platforms.

CHAPTER 4. SKETCHOVSKY: OPTIMIZING ENSEMBLES OF SKETCH INSTANCES ON
PROGRAMMABLE SWITCHES 73

4.8 Summary

In this paper, we tackled an often ignored problem of running an ensemble of sketch instances

to support a given portfolio of measurement tasks. To the best of our knowledge, Sketchovsky is

the first end-to-end system that explores cross-sketch optimizations in practice. We showed that

our novel cross-sketch optimization building blocks and efficient strategy finder make previously

infeasible ensembles of sketch instances feasible on modern hardware.

Chapter 5

Auto-code Composition Framework: Automatically

Generates Optimized Sketch Data Plane Code

To simplify developer and operator effort, we design a simple-yet-effective switch-code genera-

tion process that realizes the selected strategy from Sketchovsky. Manually translating a strategy

into an optimized code is challenging, because the strategy contains information about the com-

plicated interplay among multiple optimization building blocks and a set of sketch instances. We

build an auto-code composition that automatically translates a given strategy into optimized sketch

code. This relieves the burden of manual work of network operators. This auto-code composition

framework can help build code for both a single sketch instance and ensembles of sketch instances.

Given the output of the strategy finder and a set of sketch P4 codes for S , we generate a unified

and optimized P4 program. Using solution X∗ from the strategy finder in Sketchovsky, we need

three steps to generate an optimized P4 code for S as in Fig. 5.1.

5.1 Step 1. Create Sketch P4 Codes

The first step requires network operators to provide N sketch P4 codes that should match with

sketch features and configurable parameters for the ensemble S = {si}Ni=1 (e.g., Table 4.1).

Code template library. Writing N sketch P4 codes from scratch is a cumbersome task for

network operators. An effective method is to provide code templates of the sketching algorithm

74

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 75

Auto-code composition (§6)

Strategy
Finder (§5)

Code Rewriter
opt.p4

inst1.p4inst1.p4inst1.p4

𝑋∗

An Optimized
Sketch Code

Code
Template

Lib
SketchLib

Lib for Opt

Concatenator

A merged
P4 code

An Ensemble

Figure 5.1: Overview of auto-code composition

Sketch
Instances

Base
Sketch Algo

Configurable Parameters
Flowkey Flowsize Resources

… … …
𝑠! count-min srcIP, dstIP packet bytes (3, 1024)
… … …

count-min

Code template Lib

PCSA UnivMon …

pick

configure
si.p4

s1.p4

sN.p4

…

…

Figure 5.2: Code template library

01: /* 1. hash computation step – no code */
02: /* 2. counter update step */
03: s#_est1 = CounterUpdate(seed1, FLOWKEY, WIDTH,
04: SL, Counter, FLOWSIZE);
05: s#_est2 = CounterUpdate(seed2, FLOWKEY, WIDTH,
06: SL, Counter, FLOWSIZE);
07: s#_est3 = CounterUpdate(seed3, FLOWKEY, WIDTH,
08: SL, Counter, FLOWSIZE);
09: s#_th = AboveThreshold(s#_est1, s#_est2, s#_est3,
10: THRESHOLD);
11: /* 3. counter update step */
12: if (s#_th) { HFS(FLOWKEY); }

Figure 5.3: Code template example for count-min sketch

with which P4 code for a sketch instance can be created. We build code templates for sketching

algorithms so that network operators can configure the template with tunable parameters. Fig. 5.2

shows how to use the code template library. For each sketch instance si, it first picks a code

template in the code template library using base sketching algorithm. Then using the configurable

parameters, network operators can conveniently create sketch P4 code for si.

Next, we show examples of code templates. Fig. 5.3 and Fig. 5.4 are code templates for

count-min sketch and PCSA. Code templates have placeholders with an underline for configurable

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 76

01: /* 1. hash computation step */
02: s#_h = HashUnit(seed1, FLOWKEY);
03: s#_value = TCAM_LPM(s#_h);
04: /* 2. counter update step */
05: CounterUpdate(seed2, FLOWKEY, WIDTH,
06: SL, PCSA, s1_value);
07: /* 3. heavy flowkey storage step – no code */

Figure 5.4: Code template example for PCSA

parameters. Network operators can fill out placeholders using configurable parameters. For ex-

ample, they can put {srcIP, dstIP} to FLOWKEY, hdr.ipv4.total_len to FLOWSIZE, and 1024 to

WIDTH. For different numbers of counter arrays (e.g., 3 counter arrays), network operators should

write multiple lines of code for counter update (e.g., line 3-8 in Fig. 5.3).

Code templates have five sections starting with the init section containing codes for setup such

as header includes, and the parser. Next, there are three sections for three workflow steps; hash

computation, counter update, and heavy flowkey storage. Lastly, there is the end section including

codes for the the deparser. The init section and the end section are identical across all code tem-

plates. Thus, these sections are hidden in Fig. 5.3 and Fig. 5.4. Our focus is on three sections for

three workflow steps.

SketchLib. To simplify the code template, we consider using a common library to write codes

for sketch instances, such as SketchLib [17]. The idea of using API calls makes code templates

simple and concise. We extend SketchLib to enable the flexible configuration of various sketch

features and configurable parameters. For example, API call CounterUpdate() in Fig. 5.4 at

line 5 gets any definition of flowkey and any counter update type (e.g., PCSA type is used in this

example). We summarize extended API calls from SketchLib as in Table 5.1.

● TCAM_LPM (hash_result) uses TCAM for the longest prefix match to compute the left-

most position of 1-bit in the hash result, which is used in many sketching algorithms. This API

call is the same as tcam_optimization() in SketchLib.

● CounterUpdate (seed, flowkey, width, CA_type, CU_type, ...) does

one counter update for configured flowkey, counter array type (CA_type) of whether single-

level (SL) or multi-level (ML), counter update type (CU_type), width of counter array (width).

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 77

Two Libs API Name API Parameters Extended from SketchLib

SketchLib

TCAM_LPM() hash_result Same as tcam_optimization()
CounterUpdate() seed, flowkey, width, CA_type, CU_type, ... Extends consolidate_update()
AboveThreshold() LIST(estimate), threshold Extends heavy_flowkey_storage()
HFS() flowkey Extends heavy_flowkey_storage()

Lib for Opt CounterUpdate_2()
seed, flowkey, width, CA_type, CU_type1,
CU_type2, ... New API for SALU-Merge (OCtr2)

Table 5.1: API calls extended from SketchLib and Lib for optimization

seed is used for the hash call to generate column index for the counter update. Depending on

the different CU_type, it takes more parameters (e.g., packet length for COUNTER type or

value out of TCAM_LPM for HLL/PCSA type). We extended consolidate_update() in

SketchLib to build this API call.

● AboveThreshold (LIST(estimate), threshold) gets the threshold and a list of

flow size estimates (these are return values after each counter update). This API call returns

whether the overall flow size estimate is above the threshold or not1. This logic was part

of heavy_flowkey_storage() in SketchLib and we separate the API call for the code

rewrite process.

● HFS (flowkey) stores heavy flowkey. This API extends heavy_flowkey_threshold()

in SketchLib by supporting any definition of flowkey.

5.2 Step 2. Code Concatenation

For the next step, the concatenator in Fig. 5.1 gets the input of N sketch P4 codes created from

code templates and concatenates N sketch P4 codes into one merged P4 code. A list of sketch P4

codes created by instantiation of code templates is given as an input to the auto-code composition

component as in Fig. 5.1. Ultimately, we need one merged P4 code to run on the switch. To do

this, a module concatenator gets the input of N sketch P4 codes and concatenates them into one

merged P4 code. It is depicted in Fig. 5.5 as the left side of the figure. Note that we need only one

init section at the beginning and one end section at the end. In the middle, we have concatenated

three sections for each sketch instance.
1For count-min sketch, overall flow size estimate is min of List (estimate). For count sketch, overall flow size estimate is median of List

(estimate).

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 78

1. Hash computation

2. Counter Update

3. Heavy Flowkey Storage

𝑠!

One merged P4 code
Strategy 𝑋∗ = {𝑋"#∗ , 𝑋"$∗ , 𝑋%#∗ , 𝑋%$∗ , 𝑋&∗}

𝑠"

𝑠#

…

0. Init

1. Hash computation

2. Counter Update

3. Heavy Flowkey Storage

4. End

1. Hash computation

2. Counter Update

3. Heavy Flowkey Storage

1. Hash computation

2. Counter Update

3. Heavy Flowkey Storage

Use {𝑋"#∗ , 𝑋"$∗ }
Use {𝑋%#∗ , 𝑋%$∗ }
Use {𝑋&∗}

Optimized P4 code

Lib for optimization

4. End

0. Init

Figure 5.5: Code rewriter uses strategy X∗ to create an optimized P4 code

5.3 Step 3. Code Rewrite using Strategy

The third step is code rewriting to translate the selected strategy X∗ into optimized code. Code

rewriter in Fig. 5.1 gets three inputs; a merged P4 code from the step 2, strategy X∗ from the

strategy finder, and Library for Optimization (Lib for Opt) that is used to apply SALU-Merge

(OCtr2). Using X∗ = {X∗
Hash,X

∗
Ctr,X

∗
KEY }, the code rewriter sequentially translates X∗

w to each

workflow step in a merged P4 code by rewriting short lines of code. Leveraging the code templates

makes the code rewriting process a lot easier. First, a merged sketch P4 code is structured in a way

that the code rewriter can easily parse and apply optimizations. Second, the amount of code rewrite

is minimized because sketch code templates are concise by using API calls in SketchLib and Lib

for Opt.

Applying SALU-Merge (OCtr2) requires new codes for implementing two counter arrays to

share one SALU that the before code does not have. Thus, we build a new library (Lib for Opt)

shown in Fig. 5.1 to implement OCtr2 and the code rewriter can use this library for applying OCtr2 .

The definition of the API call for Lib for Opt is in Table 5.1.

● CounterUpdate_2 (seed, flowkey, width, CA_type, CU_type1, CU_type2,

...) This API looks similar to CounterUpdate() but the difference is that this API does

two counter updates by using one SALU. Thus, parameters include two counter update types

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 79

01: // code for s1
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: ... /* 2. counter update step */
05: ... /* 3. heavy flowkey storage step */
06: // code for s2
07: s2_h = HashUnit(seed2, srcIP);
08: ...
09: // code for s3
10: s3_h = HashUnit(seed3, dstIP);
11: ...
12: // code for s4
13: s4_h = HashUnit(seed4, srcIP, dstIP);
14: ...

Figure 5.6: [Before] Hash-Reuse (OHash1) and Hash-XOR (OHash2)

01: // code for s1, s2, s3
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: s2_h = s1_h;
05: s3_h = HashUnit(seed3, dstIP);
06: s4_h = s1_h ^ s3_h;
07: ...

Figure 5.7: [After] Hash-Reuse (OHash1) to {s1, s2} and Hash-XOR (OHash2) to {{s1, s2}, s3, s4}

CU_type1 and CU_type2. There are one flowkey, one width, and one counter array type

because they should be the same due to applicable conditions of OCtr2 .

For other optimizations {Oj}j∈{Hash1,Hash2,Ctr1,Key}, we do not need new API calls because

a simple rewrite is enough for implementing reusing resources (OHash1 , OHash2 , OCtr1) or XOR

operation (OHash2) (e.g., at line 6 in Fig. 5.7). As a result, the code rewriter can translate all five

optimizations into an optimized code. Next, we show examples of before and after code snippets

for all optimizations.

5.3.1 Before and After Code Snippets for Auto-code Composition

We start by looking at the before and after code snippets for hash computation optimizations

(OHash1 and OHash2) to illustrate how we auto-generate optimized codes. Then, we see the code

snippets for counter update optimizations (OCtr1 , OCtr2), and heavy flowkey optimization (OKey).

Code rewrite for hash computation. Fig. 5.6 is the code snippet without optimization and we call

it before code. Fig. 5.7 is the code snippet after applying X∗
Hash and we call it after code. We have

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 80

S = {si}4
i=1, F = {{srcIP},{srcIP},{dstIP},{srcIP, dstIP}}. The before code allocates hash

calls to generate hash results for each flowkey (lines 3, 7, 10, 13 in Fig. 5.6). To emulate different

logical hash seeds for independence, we configure the hash units with different CRC polynomials

in practice. Then, we apply optimizations using a given solutionX∗
Hash = {{{s1, s2},{s3},{s4}}},

which means the code should reuse {srcIP} for {s1, s2} and use XOR operation to create a hash

result for {srcIP, dstIP} = {srcIP} ⊕ {dstIP}. If we look at line 4 in Fig. 5.7, the hash result of s2

reuses the hash result of s1. Line 6 in Fig. 5.7 shows XOR-based hash result reconstruction. As a

result, the usage of the hash call is reduced from 4 to 2.

Code rewrite for counter update. Code rewriter uses {X∗
Ctr1,X

∗
Ctr2} to apply SALU-Reuse

(OCtr1) and SALU-Merge (OCtr2) to counter update step. AlthoughOCtr1 andOCtr2 can be applied

simultaneously, we explain code rewrite logic separately for better readability. Code rewrite for

OCtr1 to S requires code changes with lines using CounterUpdate() in the extended Sketch-

Lib. Code rewrite for OCtr2 uses a new API call, CounterUpdate_2().

We first look at how to apply OCtr1 using X∗
Ctr1 by looking at the before (Fig. 5.8) and after

(Fig. 5.9) code snippets. Three sketch instances {s1, s2, s3} in Fig. 5.8 are count-min sketch,

K-ary sketch, and entropy sketch respectively and they have different resource parameters C =

{(ri,wi)}3
i=1 = {(3,2K), (2,4K), (1,8K)}. {s1, s2} tracks heavy flowkey and they check whether

flow size estimate is above threshold at line 10 and 21 in Fig. 5.8. X∗
Ctr1 specifies that code

rewriter should apply OCtr1 to {s1, s2, s3}, meaning that they satisfy applicable conditions for

OCtr1 . Then, the code rewriter computes row and width of counter arrays for reuse W as discussed

as in (4.3), §4.3.2. As a result, W = {8K,4K,2K} is computed in this example and the code

rewriter applies this as in lines 4-9 in code snippet Fig. 5.9.

Next, we look at how the code rewriter applies OCtr2 by using X∗
Ctr2. Fig. 5.10 is the before

code snippet and Fig. 5.11 is the after code snippet. {s1, s2, s3} in Fig. 5.10 are count-min sketch,

entropy sketch, and PCSA sketch respectively and C = {(3,2K), (2,4K), (1,8K)}. We cannot

apply OCtr1 to {s1, s2, s3} for this example because flowsize definitions are different between s1

and s2 (s1 tracks packet bytes if we look at lines 5, 7, 9 in Fig. 5.10 whereas s2 tracks packet

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 81

01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05: Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07: Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: s2_est1 = CounterUpdate(seed4, srcIP, 4K, SL,
18: Counter, pktlen);
19: s2_est2 = CounterUpdate(seed5, srcIP, 4K, SL,
20: Counter, pktlen);
21: s2_th = AboveThreshold(s2_est1, s2_est2, 100);
22: ... /* 3. heavy flowkey storage step */
23:
24: // code for s3
25: ... /* 1. hash computation step */
26: /* 2. counter update step */
27: CounterUpdate(seed6, srcIP, 4K, SL, Counter,
28: pktlen);
29: ... /* 3. heavy flowkey storage step */

Figure 5.8: [Before] SALU-Reuse (OCtr1)

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate(seed1, srcIP, 8K, SL,
05: Counter, pktlen);
06: s_est2 = CounterUpdate(seed2, srcIP, 4K, SL,
07: Counter, pktlen);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: s2_th = AboveThreshold(s_est1, s_est2, s_est3,
13: 200);
14: ... /* 3. counter update step */

Figure 5.9: [After] SALU-Reuse (OCtr1) to {s1, s2, s3}

counts at lines 17-18 in Fig. 5.10). Counter update types are also different between {s1, s2} and

{s3}. {s1, s2} uses COUNTER type whereas {s3} uses PCSA type.

Instead of OCtr1 , we can apply OCtr2 and X∗
Ctr2 specifies that the code rewriter can apply

OCtr2 to {s1, s2, s3}. Using the information in X∗
Ctr2, the code rewriter knows that the first two

counter arrays of s1 can share SALUs with s2, and the last counter array of s1 can share a SALU

with s3. We use the new API call CounterUpdate_2() to apply this optimization at lines 4-9

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 82

in Fig. 5.11. For the first two counter arrays (lines 4-7), both counter update types are COUNTER

type. Thus, the API call takes two additional parameters of flowsize definitions of packet bytes

and packet counts. For the third counter array (lines 8-9), counter update types are COUNTER and

PCSA. Thus, two additional parameters are flowsize definition of packet bytes and an output value

of TCAM_LPM written as s3_value at line 9 in Fig. 5.11.

01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05: Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07: Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: CounterUpdate(seed4, srcIP, 4K, SL, Counter, 1);
18: CounterUpdate(seed5, srcIP, 4K, SL, Counter, 1);
19: ... /* 3. heavy flowkey storage step */
20:
21: // code for s3
22: ... /* 1. hash computation step */
23: /* 2. counter update step */
24: CounterUpdate(seed6, srcIP, 8K, SL, PCSA,
25: s3_value);
26: ... /* 3. heavy flowkey storage step */

Figure 5.10: [Before] SALU-Merge (OCtr2)

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate_2(seed1, srcIP, 8K, SL,
05: Counter, Counter, pktlen, 1);
06: s_est2 = CounterUpdate_2(seed2, srcIP, 4K, SL,
07: Counter, Counter, pktlen, 1);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, PCSA, pktlen, s3_value);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: ... /* 3. counter update step */

Figure 5.11: [After] SALU-Merge (OCtr2) to {s1, s2, s3}

Code rewrite for heavy flowkey storage. Code rewriter uses X∗
Key to apply HFS-Reuse (OKey)

to the heavy flowkey storage step. Fig. 5.12 is the before code snippet and Fig. 5.13 is the after

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 83

code snippet. We have four sketch instances {s1, s2, s3, s4} with different flowkeys F = {{srcIP},

{srcIP, dstIP}, {srcIP, srcPort}, {srcIP, dstIP, srcPort, dstPort}} and all sketch instances track heavy

flowkey. OKey uses union key UK = ∪ifi for the heavy flowkey storage for reuse. In this example,

UK ={srcIP, dstIP, srcPort, dstPort} is written at line 14 in Fig. 5.13. Recall that we have further

optimization using conditional union-key UKC = ∪jfjwhere (flow size estimate)j > thresholdj

and set 0 to (UK − UKC). This optimization is written in the code at lines 6-11 in Fig. 5.13.

For each packet header field (e.g., dstIP), it detects which sketch instances have this header field

(e.g., s2 and s4 because f2 and f4 have dstIP). Then if any of those sketch instances is above the

threshold (at line 9), those header fields are included in UKC . If not, this header field is set to zero

(at line 5). As a result, we can reduce 4 heavy flowkey storages to 1 heavy flowkey storage.

01: // code for s1
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: if (s1_th) { HFS(srcIP); }
06:
07: // code for s2
08: ...
09: /* 3. heavy flowkey storage step */
10: if (s2_th) { HFS(srcIP, dstIP); }
11:
12: // code for s3
13: ...
14: /* 3. heavy flowkey storage step */
15: if (s3_th) { HFS(srcIP, srcPort); }
16:
17: // code for s4
18: ...
19: /* 3. heavy flowkey storage step */
20: if (s4_th) { HFS(srcIP, dstIP, srcPort, dstPort); }

Figure 5.12: [Before] HFS-Reuse (OKey)

CHAPTER 5. AUTO-CODE COMPOSITION FRAMEWORK: AUTOMATICALLY GENERATES OPTIMIZED
SKETCH DATA PLANE CODE 84

01: // code for s1, s2, s3, s4
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: hf_srcIP = hf_dstIP = hf_srcPort = hf_dstPort = 0
06: if (s1_th || s2_th || s3_th || s4_th) {
07: hf_srcIP = srcIP;
08: }
09: if (s2_th || s4_th) { hf_dstIP = dstIP; }
10: if (s3_th) { hf_srcPort = srcPort; }
11: if (s4_th) {hf_dstPort = dstPort; }
12:
13: if (s1_th || s2_th || s3_th || s4_th) {
14: HFS(hf_srcIP, hf_dstIP, hf_srcPort, hf_dstPort);
15: }

Figure 5.13: [After] HFS-Reuse (OKey) to {s1, s2, s3, s4}

Chapter 6

CounterFetchLib: Optimizing Sketch Control Plane

on Programmable Switches for Accurate

Measurement Results

Recent advances have made it possible to design and implement various telemetry capabilities,

such as sketches [32, 37, 43], counting bloom filters [44], and others [34] in programmable

switches [9, 11]. At a high level, these network measurement tasks maintain data structures with

arrays of counters in the data plane for tracking traffic flows, which are then retrieved by the switch

and network control plane.

Our specific focus in this work is on sketches. The typical workflow of sketch-based telemetry

is as follows: for every (pre-defined) measurement epoch (i.e., a periodic time window), the switch

control plane fetches the counter arrays to compute statistics of interest (e.g., heavy hitters, distinct

flows, entropy [22, 32, 37, 43, 58, 71, 100]) and resets the counter arrays. Essentially, the counter

arrays are shared state between the data plane and the control plane. The data plane updates the

state when processing packets, and the control plane reads the state per epoch and resets the state

for the next epoch.

While the fidelity of the sketches is backed by theoretical analysis [32, 37, 43], in practice when

we implement and deploy sketches using the above workflow on programmable hardware switches

(e.g., Intel Tofino-based switch), the empirical results are inaccurate (§6.1). For instance, there is

85

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 86

a significant accuracy drop (e.g., up to 94× error increase), when the epoch size is small (e.g., 5s

to 1s). To the best of our knowledge, we are the first to document this counter retrieval problem

and propose solutions.

We systematically investigate the state fetching and resetting process implemented on an Intel

Tofino-based switch [9]. Our analysis shows that the time spent on pulling and resetting data plane

states is non-trivial. We decompose delays into the control and data plane delays, identify a total

of six potential delays, and quantify the impact of each component. Our analysis reveals that two

control plane delays can cause significant impacts on the accuracy of counters (§6.2).

Having identified the key bottlenecks, we propose four correct-by-construction solution build-

ing blocks, within the scope of sketching algorithms, with different trade-offs:

• Duplicating sketch instances in the data plane, one of which is updated alternately in succes-

sive epochs.

• For sketches with a linearity property [44, 58, 65, 85], the control plane can offset the error

by subtracting counter arrays between previous and current epoch.

• Deferring a control plane read operation after a reset operation to reduce the impact of the

bottleneck delay.

• Using a faster bulk reset API.

We also propose guidelines on which building blocks are appropriate for different use cases (§6.3).

We implement these building blocks for five sketches [32, 37, 43, 47, 71] and evaluate them on

a Tofino-based programmable switch [9]. We demonstrate that delays are reduced by more than

95%, and error is reduced by more than 97% (§6.5). While our focus is on sketches, our findings

and solutions are likely more broadly applicable to other measurement tasks, since they often share

workflow interactions between the data and control plane.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 87

Switch Control Plane

Switch Data Plane
counter arrayspacket

stream

Epoch read_state()
reset_state()

read
req.

read
res.

reset
req.

ack

𝛥𝑟𝑒𝑎𝑑 𝛥𝑟𝑠𝑡

Figure 6.1: Workflow of sketches.

6.1 Motivation

We first describe the common workflow of sketches in Fig. 6.1. We then highlight the sketch

accuracy drop in an actual hardware implementation compared to a software implementation and

discuss the implications of this observation.

Typical Workflow. Fig. 6.1 shows the common workflow for deploying network measurement

tasks on programmable switches. Traffic is chunked into time intervals or epochs. On the data

plane, network measurement tasks maintain counter arrays that are updated by processing packets.

At the end of every epoch, the control plane periodically reads the counter arrays and resets them.

We implement five published sketches [32, 37, 43, 47, 71] on a Tofino-based programmable switch

using the above workflow and observed a significant discrepancy in accuracy compared with a

software implementation. We illustrate the problem using a simple sketch called count-min sketch

(CM) [37]. The CM uses a 2D array of counters to detect heavy hitters from a packet stream for a

given flowkey (e.g., srcIP). We use srcIP as the flowkey for our implementation.

Methodology. The sketch implementation on the hardware is partitioned across the data and

control plane. In the data plane, we run the count-min sketch (CM) [37] written in P4 [29] and send

the input packet stream (S) to the switch from a directly connected server using tcpreplay [8].

The control plane periodically reads and resets the counter arrays using the control plane API

provided by the Tofino SDK [12]. The SDK supports Python and C++, and we present results using

C++ API.1 To obtain the theoretically expected accuracy, we use a software implementation of CM
1Based on the conversation with Barefoot, the Python API is not recommended for latency critical applications because Python API is a RPC

wrapper for the C++ API.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 88

4K 8K 16K 32K 64K

counter array size

0

20

40

60

80

100

%
of

D
iff

er
en

t
C

ou
nt

er
s

Different Counters

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

((a)) Different Counters.

4K 8K 16K 32K 64K

counter array size

0

2000

4000

6000

8000

10000

N
or

m
al

iz
ed

E
rr

or
In

cr
ea

se
(%

)

Error Increase

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

((b)) Error Increase.

Figure 6.2: Different counters cause accuracy degradation.

sketch written in C++. We split an input packet stream S into multiple subsets Si corresponding

to an epoch with length L.2 The software implementation pauses packet processing while it reads

and resets the counter array. We measured the accuracy of the sketch using both the software and

hardware implementations for different epoch lengths (L) and counter array sizes.

Findings. Fig. 6.2(a) shows the percentage of the number of different counters in the counter

array between the software simulation and the hardware measurement. We see that up to 98% of

counters are different. This discrepancy problem reduces accuracy as shown in Fig. 6.2(b). The

normalized error increase is defined as Erroractual−Errorexp
Errorexp

, where Error exp is the expected error

using software sketch implementation relative to ground truth and Erroractual is the actual error

using the hardware implementation. The error increases up to 94× at an array size of 64K and

epoch length of 1. We use an average relative error (§6.5.1) as the error of CM.

Implications. At a high level, the discrepancy arises due to the delays involved in the read and

reset operation in Fig. 6.1, ∆read and ∆rst . As we will see later (§6.2), they are not negligible.

Note that the above results focus on a simple sketch with a small counter array, a relatively large

epoch (1 to 30 seconds), and non-adversarial traffic conditions. In practice, the problem could be

worse.
2For the input packet stream S, we sample ten one-minute packet traces from inter-ISP packet trace captured on an OC-192 link [1].

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 89

• First, richer network measurement tasks that use more data plane counters, such as R-HHH [22]

and UnivMon [71], will be impacted more as the impact increases with the size of the counter

array.

• Second, network measurement tasks with tighter timing deadlines (shorter epochs) will be

impacted more, as the delay becomes more significant relative to the epoch length.

• Lastly, the worst case error can become unbounded; there can be bursts of packets (e.g.,

anomalies or attacks) that coincide with the ∆read or ∆rst intervals.

6.2 Problem Diagnosis

We take a closer look at the read and reset delays to better understand the discrepancy problem.

6.2.1 A Closer Look at Sources of Error

We can logically decompose the read and reset delays into control and data plane delays, as shown

in Fig. 6.3. The read delay at Epoch i, ∆read i, consists of two control plane delays and one data

plane delay: ∆read i = ∆readC1
i +∆readC2

i +∆readD
i , where ∆readD

i represents the duration of

read operation in the data plane. Similarly, we can represent the the reset delay as ∆rst i = ∆rstC1
i

+∆rstC2
i +∆rstDi , with similar control and data plane components.

Let F (S) be the function of sketching algorithm computed on a given set of packets S. For

Epoch i, we want to measure F (Si). However, the above delays cause a different set of packets

actually being monitored; they are marked as epoch packets and measured packets in Fig. 6.4.

More specifically (see Fig. 6.3), let S∆readi
and S∆rsti denote the sets of packet streams during

the read and reset operation in Epoch i. Let S∆readC1
i

, S∆rstC1
i

denote the sets of packets during

∆readC1
i and ∆rstC1

i . S∆readD
i

, S∆rstDi
are more subtle because the control plane and data plane

access the counter array simultaneously. We define S∆readD
i

(similarly S∆rstDi
) as the set of packets

in the traffic stream during ∆readD
i (∆rstDi) where packets in this set update the counter array

before the read and reset operation is executed.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 90

𝛥𝑟𝑒𝑎𝑑!

𝛥𝑟𝑒𝑎𝑑!"#
Ctl

plane

data
plane

set of
packets

𝛥𝑟𝑒𝑎𝑑!"$

counter array

𝛥𝑟𝑠𝑡!

𝛥𝑟𝑠𝑡!"# 𝛥𝑟𝑠𝑡!"$

𝐸𝑝𝑜𝑐ℎ!

𝑆∆&'()!"# 𝑆∆&*+!"#𝑆∆&'()!$ 𝑆∆&*+!$
𝑆∆&'()!

counter array

𝑆∆&*+!

…
𝛥𝑟𝑒𝑎𝑑!, 𝛥𝑟𝑠𝑡!,

Figure 6.3: Decomposition of the read and reset delays into control plane and data plane delays at Epochi.

𝐸𝑝𝑜𝑐ℎ!

𝛥𝑟𝑠𝑡!𝛥𝑟𝑒𝑎𝑑! 𝛥𝑟𝑠𝑡!"#𝛥𝑟𝑒𝑎𝑑!"#

𝑆! 𝑆!"#

… …

𝐸𝑝𝑜𝑐ℎ!"#

: measured packets (HW): epoch packets (SW)

𝑆∆%&'!"# 𝑆∆%&'!$ 𝑆∆%()*!%#"# 𝑆∆%()*!%#$𝑆∆%()*! 𝑆∆%&'!

Figure 6.4: Different input packet sets between software and hardware create the discrepancy problem.

The measured packets (the dotted line in Fig. 6.4) is F ({Si − (S∆readi
∪ S∆rstC1

i
∪ S∆rstDi

)}∪ {

S∆readC1
i+1

∪ S∆readD
i+1

}). Note that the effect of ∆readC2
i is included in S∆readi

. Next, we quantify

the delays that cause the loss in accuracy.

6.2.2 Quantifying Sources of Error

To understand the magnitude of impact from each source of delay, we measure and quantify each

delay.

Methodology. We measure the delays by sending packets at a controlled rate to the switch data

plane and reading the counter values into the control plane. We use custom benchmarking pro-

grams in addition to the sketch implementations—data plane program using P4 language and the

control plane using C++ API. Our measurements use efficient control plane read and reset op-

erations. For the read operation, we utilize table sync operation which uses bulk DMA transfer

from data plane counter arrays into control plane buffer so that the control plane can read counters

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 91

4K 8K 16K 32K 64K
counter array size

0

100

200

300

400

500
D

el
ay

(m
s)

∆readi

1 bit counter

32 bit counter

64 bit counter

4K 8K 16K 32K 64K
counter array size

0

100

200

300

D
el

ay
(m

s)

∆rsti

1 bit counter

32 bit counter

64 bit counter

Figure 6.5: The read and reset delays (ms).

quickly. For the reset operation, we use the transaction API, which accelerates the individual write

operations.

To measure ∆readD
i we need to measure the time during the data reads from the first counter

counter[0] to the last counter counter[N-1] of a counter array. This can be measured by synthe-

sizing a packet stream that contains two packets every 100µs and using them to increment (+1)

counter[0] and counter[N-1] respectively. In this way, ∆readD
i can be measured by (counter[N-

1] −counter[0]) ×100µs because the read operation is executed sequentially from 0 to N − 1. The

server uses tcpreplay to send this synthesized packet stream to the directly connected switch

while the control plane executes the read operation.

We use the same setup to measure the duration of the data plane reset operation ∆rstDi . How-

ever, since the reset operation resets counter values sequentially starting from the first one, the

control plane executes the reset operation during tcpreplay and then executes the read opera-

tion after tcpreplay is finished. (counter[0] −counter[N-1]) ×100µs then represents ∆rstDi .

To measure ∆readC1
i and ∆readC2

i , the control plane reads the first counter value before and after

the read operation and we can then calculate those values using subtraction. We apply the same

ideas for measuring ∆rstC1
i and ∆rstC2

i .

Result. Fig. 6.5 shows the ∆read i and ∆rst i delays for different counter array sizes and counters

(e.g., 1-bit, 32-bit). The read delay ∆read i can be up to 488 ms and the reset delay ∆rst i can be

up to 291 ms. Both delays increase linearly as the size of the counter array increases. For different

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 92

Delays 4K 16K 64K

∆read i

∆readC1
i 0.30 0.97 3.62

∆readD
i 0.01 0.07 0.31

∆readC2
i 22.21 66.70 244.49

Total 22.53 67.74 248.43

∆rst i

∆rstC1
i 16.45 41.69 145.53

∆rstDi 0.09 0.36 1.49
∆rstC2

i 0.02 0.02 0.03
Total 16.56 42.08 147.06

∆read i +∆rst i 39.10 109.81 395.48

Table 6.1: Six delay measurement (ms).

counter sizes, a 64-bit counter takes 1.97× more delay than a 32-bit counter because the switch

maintains a 64-bit counter as a pair of 32-bit counters. However, the delay difference between

32-bit and 1-bit counter is marginal (1.01×).3

Next, we look at six decomposed delays for 32-bit counters in Table 6.1. Surprisingly, ∆readD
i

and ∆rstDi take less than 0.1%, 0.4% of the total read and reset delays. Meanwhile, we can see

that ∆readC2
i and ∆rstC1

i are the dominant factors as they take up more than 98% of the sum of

the read and reset delays.

Key takeaways. Out of six delays, two control plane delays ∆readC2
i and ∆rstC1

i are dominant

factors. For example, ∆readC2
i (∆rstC1

i) of 16K array size takes 61% (38%) of the total sum of

delays. Across all sizes of counter arrays, both bottleneck delays together account for 99% of the

total delay.

6.3 Building Blocks and Solution Guidelines

In this section, we propose four solution building blocks to mask or reduce the delays identified

in the previous section. These have varying trade-offs regarding the epoch size they can support,

resource usage, general applicability across tasks. Table 6.2 summarizes these trade-offs. We

also provide some general guidelines for combining building blocks as solutions appropriate for

different use cases.
3We cannot measure the delays for 1-bit counters with the described methodology because 1-bit counter can not store an integer value. Instead,

we used a timer in the control plane program to measure delays for the 1-bit counter in Fig. 6.5.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 93

6.3.1 Building Blocks

B1: Use duplicate counters. A simple idea is to duplicate sketch instances in the data plane

and alternately use them for odd/even epochs. At Epoch i, counter array in sketch instance 1 can

be updated in the data plane while the control plane reads and resets sketch instance 2. Then at

Epoch i+1, counter array in sketch instance 2 can be updated in the data plane while the control

plane reads and resets instance 1.

Trade-off. This idea masks all delays and the key bottleneck delays. However, this idea requires

2× the data plane memory. Realizing it also requires some data plane code (P4) change.

B2: Offset counter errors in the control plane. Some sketches have a linearity property [81].

That is, counter arrays can be combined in a mathematical sense by addition and subtraction of

each counter. In such cases, the control plane can avoid explicitly resetting or duplicating the

counters. Instead, it stores the counter arrays reported from the previous epoch (in the control

plane) and obtains the counters for the current epoch by subtracting the previous counter arrays

from the counter arrays reported at the current epoch.4

Trade-off. This idea masks the key bottleneck delays of the reset and does not incur any addi-

tional data plane resources. It only requires small control plane code updates in order to subtract

counter arrays. However, this idea is only applicable to sketches satisfying the linearity property.

Fortunately, we’ve seen a range of linear sketches such as [32, 44, 58, 65, 85] for various measure-

ments. We do see one caveat that some sketches for tracking heavy hitters in the data plane [37]

need to access per-epoch counters to identify heavy flowkeys. Since the data plane only stores

accumulated values, we cannot obtain per-epoch values directly in the data plane.

B3: Defer control plane read operation. We observe that during ∆readC2
i , most of the time is

spent on reading counter arrays from an internal buffer in the control plane. That is, data is already

transferred from the data plane using bulk DMA transfer as in Fig. 6.6. Thus, we can defer this

operation of reading data from the buffer after the reset operation. We can implement this idea
4The idea of not resetting the counters across epochs can bring up a concern of overflow. However, subtracting two counter array still works as

long as there is at most 1 overflow per epoch. Empirically, the 32-bit counter is large enough to avoid two overflows.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 94

Building
Blocks ∆readC2

i ∆rstC1
i Epoch Gen. Res.

B1 hide hide smallest � 2x
B2 hide hide small × 1x
B3 hide × med � 1x
B4 × reduce med � 1x

Table 6.2: Tradeoffs for solution building blocks in different metrics such as hiding/reducing two bottleneck delays, epoch
size it can support, generality, resource usages.

read

read

reset

reset
DMA msg

CP

DP

transfer

CP read

read

read

bulk
reset

buffer

DMA msg

counter array counter array

buffer

reset

defered
read

buffer

CP read

: B3. defer the CP read operation hides 𝛥𝑟𝑒𝑎𝑑!
"#

: B4. bulk reset API reduces 𝛥𝑟𝑠𝑡!
"$

callback callback

transfer

Figure 6.6: B3: Defer control plane read operation and B4: Use bulk reset API.

because 1) the reset operation does not reset the internal buffer and 2) the read operation can be

divided into separate API calls: bulk DMA transfer and reading data from the internal buffer.

Trade-off. This idea does not require additional resources and it can be applied to sketches without

linearity property. However, it only reduces the effect of ∆readC2
i .

B4: Use bulk reset API. This solution building block directly reduces ∆rstC1
i as in Fig. 6.6.

We observed that the basic control plane support for reset updates counters one at a time. This is

effectively a write operation and provides a more general capability to write an arbitrary value at a

specific location. However, we note that there is also a clear API that suffices for our needs well

since it resets all of the counter arrays to zero with much lower delay (18× faster).5

Trade-off. This idea only reduces the effect of ∆rstC1
i , thus it still can suffer accuracy degradation

for a small epoch length.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 95

Resource is sufficient and/or high accuracy with
small epoch length is required?

Sketch has a property of a linear combination and
counter arrays are not used in the data plane?

yes

Solution 1 (B1)

no

Solution 2 (B2)

yes

no

Solution 3 (B3 + B4)

Figure 6.7: Decision tree for selecting solutions.

6.3.2 Guidelines for Sketch Developers

Based on the above building blocks, we suggest a guideline for sketch developers on which solution

is appropriate for different use cases summarized in the decision tree (Fig. 6.7):

● Solution1 (B1) would fit for small sketches and/or resources are sufficient. B1 provides the

highest fidelity, especially for small epoch length.

● Solution2 (B2) uses low resource footprint. It is a simple solution for sketches satisfying lin-

earity when counter arrays are not used in the data plane.

● Solution3 (Combine B3 and B4). These two building blocks can be combined to tackle two

bottleneck delays. The combined solution requires some implementation effort but is general

and is appropriate when resource overhead is critical.

6.4 API calls

We write C++ API calls to implement read and reset operations for three solutions as in Table 6.3.

● int* read_counters (counter_name, row, width) reads counter arrays and re-

turns fetched counter arrays to compute measurement results. This API call can be used for

solution 1. It gets parameters of counter_name to specify counter arrays to read. Row and width

information of counter arrays should be specified.

● int* read_reset_counters (counter_name, row, width) both reads and re-

sets counter arrays. It internally implements deferring control plane read (B3) operation after
5According to the conversation with Intel, Tofino2 supports an even faster bulk reset API.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 96

API Name API Parameters Explanation

int* read_counters() counter_name, row, width For Solution 2
int* read_reset_counters() counter_name, row, width For Solution 1 and Solution 3

Table 6.3: API calls extended from SketchLib and Lib for optimization

bulk reset calls (B4). Thus this API call can be used for solution 3. This API call is also

compatible with solution 1 as well.

6.5 Evaluation

Our evaluation demonstrates that (a) all solutions significantly reduce the error of the hardware im-

plementation relative to the expected accuracy and (b) the implementation effort for the solutions

is marginal in terms of additional lines of code.

6.5.1 Experimental Setup

Testbed. We use an Edgecore Wedge 100BF Tofino-based programmable switch and a server

equipped with dual Intel Xeon Silver 4110 CPUs, 128GB RAM, and a 100Gbps Mellanox CX-4

NIC connected to the switch. We use Tofino SDE version 9.1.1 in our experiment. We send the

trace to the switch from a directly connected server using tcpreplay.

Traces. We use sampled ten one-minute packet traces from CAIDA backbone traces capture at

1/21/16 Chicago [1].6

Sketches. We implement five sketches, MRB [43], HLL [47], count sketch (CS) [32], count-min

sketch (CM) [37], and UnivMon (UM) [71] using P4 language. MRB uses 1-bit counters and the

rest of the sketches use 32-bit counters. MRB and HLL use one counter array and CS, CM, UM use

four counter arrays. MRB, HLL estimate cardinality, CS, CM estimate the average relative error

of top-100 heavy hitter flow counts, and UM estimates entropy. Note that out of five sketches,

CS, CM, UM satisfy the linearity property. We assume that we know all of the flowkeys for CS,

CM, UM since identifying heavy flowkeys on the data plane is orthogonal to this work. We use P4

version of P416.
6We also run experiments with other traces such as data center traces [25] and attack traces [2]. Results are similar thus, they are not shown.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 97

MRB HLL CS CM UM
A.size 64K 4K 64K 64K 128K

Unopt 1273/2% 91/1% 618K/73% 700K/76% 1030K/26%
Sol 1 0/0% 0/0% 0/0% 0/0% 0/0%
Sol 2 × × 10K/7% 10K/7% 16K/5%
Sol 3 5/0% 3/0% 22K/12% 22K/13% 33K/8%

Table 6.4: Total counter value difference / relative counter difference for five sketches and three solutions using epoch=1s.

MRB HLL CS CM UM
Array size 64K 4K 64K 64K 128K

Expected
Errors

Ideal
sketch 1.6% 4.8% 0.7% 0.4% 2.8%

Actual
Errors

Unopt 20.1% 6.2% 35.4% 34.8% 64.7%
Sol 1 1.6% 4.8% 0.7% 0.4% 2.8%
Sol 2 × × 1.0% 0.7% 2.8%
Sol 3 1.7% 4.8% 1.5% 1.1% 3.6%

Table 6.5: Expected errors vs. actual errors using epoch=1s.

Metrics of difference. We consider three types of metrics:

● Raw counters: We consider both the total counter value difference = ∑i ∣expected[i]−actual[i]∣

and the relative counter difference = ∑i(expected[i]!=actual[i])
array_size .

● Sketch Errors: Average Relative Error (ARE) is 1
k ∑

k
i=1

∣fi−f̂i∣
fi

, where k is 100. fi is true flow

count, f̂i is flow count estimate, and fi ≥ fi+1 for any i. This metric is used for CS and CM.

Relative Error (RE) is ∣True−Estimate∣
True , where T rue is true statistic value and Estimate is estimated

value. This metric is used for MRB, HLL, UM.

● Delay: We measure the sum of delays that corresponds to union and subtraction components

in §6.2.1: ∆read i + ∆rstC1
i + ∆rstDi + ∆readC1

i+1 + ∆readD
i+1.

6.5.2 Error and Delay Reduction

Counter difference reduction. We first look at the counter difference reduction in Table 6.4. We

use a fixed epoch length of 1 second. We can see that all solutions reduce almost all of the total

counter value difference compared to unoptimized hardware implementation. Specifically, Sol 1

incurs no counter difference, and Sol 2, Sol 3 incur negligible counter differences. Note that the

total counter value difference has a more direct effect on sketch accuracy than the relative counter

difference.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 98

4K 16K 64K
Unopt 39.39 110.84 399.39
Sol 1 0 (100%) 0 (100%) 0 (100%)
Sol 2 0.32 (99.20%) 1.04 (99.06%) 3.94 (99.01%)
Sol 3 1.53 (96.11%) 4.66 (95.79%) 16.67 (95.83%)

Table 6.6: The sum of delays after applying solutions in ms (% of reduction compared to unoptimized).

4K 8K 16K 32K 64K

array size

104

105

106

T
ot

al
C

ou
nt

er
V

al
ue

D
iff

er
en

ce

CS (epoch length 1s)

Unopt

Sol 2

Sol 3

1s 5s 10s 20s 30s

epoch length

104

105

106

T
ot

al
C

ou
nt

er
V

al
ue

D
iff

er
en

ce

CS (array size 64K)

Figure 6.8: Total counter value difference for CS.

Error reduction. Next, we look at the error reduction in Table 6.5. Compared to errors on

unoptimized implementation, actual errors on all solutions are almost close to expected errors

measured on software implementation.

Delay reduction. Table 6.6 shows that all solutions reduce delays significantly. Sol 1 does not

incur any delays. Sol 2 can reduce delays by 99% across all counter array sizes. Sol 3 also reduces

delays by 95%. Note that the delays after applying solutions are still linear to the counter array

size.

Detailed measurement. We observe reductions for fixed array size and epoch length. We pick

one sketch (CS) and look at the counter differences and error reductions for different array sizes

and epoch lengths. Fig. 6.8 shows that as array size increases, the total counter value difference

increases linearly, but it is constant over epoch lengths. Note that Sol 1 does not incur any counter

differences across all array sizes and epoch lengths. Fig. 6.9 shows that the error gap between

expected and un-optimized measurement is increasing as array size increases and epoch length

decreases. All solutions effectively reduce this gap, and they show similar errors as expected.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 99

4K 8K 16K 32K 64K

array size

0

10

20

30

A
R

E
(%

)

CS (epoch length 1s)

Unopt

Sol 1

Sol 2

Sol 3

Expected

1s 5s 10s 20s 30s

epoch length

0

10

20

30

A
R

E
(%

)

CS (array size 64K)

Figure 6.9: Average relative error for CS.

Additional
Lines of code

Sol 1 Sol 2 Sol 3
B1 B2 B3 B4

Data Plane P4 Code 29 0 0 0
Control Plane Program (C++ API) 63 0 0 19
Offline Processing 0 9 0 0

Table 6.7: Additional lines of code for implementing solutions.

6.5.3 Implementation Effort

Table 6.7 shows additional lines of code for implementing solutions. Sol 1 requires P4 code change

for duplicating instances and C++ control plane program change for reading instances alternatively.

Code change for Sol 2 is in an offline processing program written in Python for subtracting counter

arrays. B3 in Sol 3 does not incur any additional lines of code since it just swaps the order of the

control plane read and reset operation. B4 in Sol 3 requires additional control plane program code

for bulk reset API.

6.6 Related work

Sketch-based telemetry. Sketches have emerged as a promising telemetry solution for flow-

level measurements, including heavy hitters [32, 37, 71, 88, 100], entropy estimation [71, 84, 86],

change detection [65, 103], and distinct flows [47, 71]. While recent efforts [31, 107] propose to

maintain more light-weight sketches per device, they still suffer from the incorrect counter retrieval

issue in programmable switches and can benefit from our solutions.

CHAPTER 6. COUNTERFETCHLIB: OPTIMIZING SKETCH CONTROL PLANE ON PROGRAMMABLE
SWITCHES FOR ACCURATE MEASUREMENT RESULTS 100

Other work in network telemetry. There are complementary telemetry capabilities that focus

on packet-level and path-level monitoring (e.g., INT [63] and PINT [24]), higher-order telemetry

(e.g., performance statistics [33, 51, 74], application level monitoring [94]), diagnosis [56, 62],

as well as network-wide adaptive telemetry [52, 55]. A not hard extension is to explore if these

measurement tasks can suffer from a similar incorrect state retrieval and reset problem.

Other programmable platforms. In addition to the switches discussed in this paper, SmartNICs

such as multicore SoC NICs [5, 6] and FPGA NICs [13] are platforms for telemetry. Recent

work [61] in measuring the performances of various SmartNICs demonstrated a similar bottleneck

between the data plane and the control plane. A future direction is to explore the telemetry retrieval

inaccuracy problem in SmartNICs.

6.7 Summary

We identify and quantify the causes of an accuracy degradation in the switch control plane when we

deploy sketching algorithms on programmable switches. Our solutions informed by our analysis

can eliminate almost all the inaccuracy for five sketches. We believe our insights are more broadly

applicable to other network measurement tasks with similar control-data plane interactions.

Chapter 7

Conclusions

This chapter summarizes our contributions (§7.1) and presents reflections and lessons learned

while designing our systems (§7.2). Finally, it ends with future research direction (§7.3).

7.1 Summary of Contributions

In this thesis, we argue that we can enable performant and practical sketch-based network telemetry

on programmable switches, by proposing optimizations to the sketch implementations, and by

providing APIs and the code composition framework that automatically generates optimized codes.

With SketchLib (chapter 3), we propose six novel per-sketch optimizations to deploy a single

sketch instance on the data plane of programmable switches. We also defined and implemented an

API that realizes these optimizations, saving developers development time. SketchLib can reduce

resource bottlenecks by up to 90%, making many previously infeasible sketches feasible. We show

that SketchLib can apply to a broad range of sketching algorithms.

With Sketchovsky (chapter 4), we propose five cross-sketch optimizations to deploy an ensem-

ble of sketch instances on the data plane of programmable switches. There are many opportunities

to reuse hardware resources across sketch instances. However, searching for the optimal strategy is

intractable and can take days, because there are many ways to use and combine the optimizations.

We propose a set of greedy heuristic algorithms that allow us to fine a near-optimal strategy in less

than one second. Using this strategy, we show that we can reduce up to 45% of resource bottle-

101

CHAPTER 7. CONCLUSIONS 102

necks of ensembles of sketch instances. Sketchovsky makes many previously infeasible ensembles

of sketch instances feasible.

Using our Auto-code Composition Framework (chapter 5), optimized P4 code for an ensem-

ble of sketch instances can be automatically generated by simple code rewrites. Although Sketchlib

and Sketchovsky can quickly find near-optimal strategies, manually applying them to an ensemble

of sketch instances and writing optimized code is a demanding task. Our auto-code composition

framework can reduce the development time significantly for translating picked strategy into the

optimized code.

To help with the design of CounterFetchLib (chapter 6), we did bottleneck analysis to find the

root cause of the measurement errors caused by the sharing of counters by the control and data

plane and propose solutions to reduce execution time for read and reset operations. As a result,

the delay is reduced by 95%, and measurement error is reduced by 97%. Further, we provide API

calls for developers to reduce the development time of sketch control plane implementations.

7.1.1 Putting it all together

All four systems are integrated together to enable performant and practical sketch-based network

telemetry on programmable switches. Given an ensemble of sketch instances, the auto-code com-

position framework receives the strategy from Sketchovsky to automatically generate optimized

code. When generating code, each sketch instance is created based on sketch templates, and tem-

plates use API calls from SketchLib. Thus, templates become more simple and more concise while

per-sketch optimizations are automatically applied. CounterFetchLib is used to optimize read and

reset operation in the control plane for both a single sketch instance (SketchLib) and an ensemble

of sketch instances (Sketchovsky and Auto-code Composition).

7.2 Lessons Learned

Reflection 1: RMT hardware is difficult to deal with. It takes a significant amount of time to

understand the inner workings of the RMT programmable hardware switch. The switch utilizes

CHAPTER 7. CONCLUSIONS 103

various hardware resources for implementing sketches, and figuring out constraints and dependen-

cies among hardware resources is challenging. For example, different hardware resources are used

together to perform hash computations (e.g., hash bits, hash calculation units, and hash distribution

units). It is important to understand the function of each hardware component and how they are in-

tegrated together to identify resource bottlenecks (e.g., hash distribution unit was the bottleneck).

The packet header vector (PHV) compilation error was also difficult to understand: the occurrence

of error depends on the usage of other resources, but detailed information on these constraints is

not publicly available. Understanding these constraints and dependencies requires many iterations

of the compilation with trials and errors. Thus, the difficulty of learning the internal architecture

and writing data plane and control plane programs is a big factor in hindering the deployment

of programmable switches into industry settings. In this sense, our approach of providing APIs,

auto-code composition framework, and open-source codes is a great step towards reaping the true

potential of deploying sketching algorithms deployed on programmable switches.

Reflection 2: sketching algorithms on programmable switches are powerful. From my the-

sis, I learned that running sketching algorithms on programmable switches for flow-level network

telemetry is indeed feasible and powerful. We made many contributions to realize this goal and

showed its feasibility using actual hardware switches. We believe this approach has huge poten-

tial for better managing and debugging real-world problems. Many practitioners are still relying

on packet sampling or NetFlow, and they may suffer from inflexibility and inaccuracy as a re-

sult. Conversations with industry and companies confirm the desire for rich flow-level network

telemetry.

Reflection 3: we still have many missing pieces. Although this thesis achieves significant im-

provements, there are still many missing pieces to fully realize the four goals that motivated our

research. The first of these is generality. We only focused on around 20 sketching algorithms

on RMT-based hardware architecture. It would be beneficial to incorporate more sketching algo-

rithms on diverse hardware devices. The second of these is a global view of the network system.

We focused on implementing sketching efficiently on a single device, but what about multiple de-

CHAPTER 7. CONCLUSIONS 104

vices with different network topologies with different devices? There are new challenges, such as

how to distribute workload to each device correctly as if it is one big switch abstraction. The next

section will discuss these limitations and promising future research directions.

7.3 Future Work

The ultimate vision for performant sketch-based network telemetry is to make network telemetry

easier to use and manageable across various hardware devices in network-wide settings. Although

our work makes solid contributions towards achieving this goal, there are still some missing pieces.

To this end, we propose promising future research directions to fill those gaps.

Query - sketching mapping. The scope of this thesis assumes that the input is ensembles of

sketch instances with fixed resource configuration. However, deciding on a list of sketch instances

with resource parameters can be challenging for network operators. Ideally, network operators

have a set of queries they want to run, and this set of queries should be the input of the prob-

lem. Each query has its own statistic (e.g., topk flows or cardinality) to compute, definitions of

flowkey and flowsize, and desired accuracy level (e.g., 1% or 0.1% of error). Given this set of

queries, finding a set of sketch instances with resource parameters is challenging. This mapping

must consider resource-accuracy trade-offs for all sketching algorithms based on the knowledge

that some sketching algorithms can support multiple statistics. This mapping process should also

consider the objective function of which hardware resources must be minimized, because different

sketching algorithms use different resource usage profiles, and network operators have different

needs for objective functions depending on other network functions running in parallel with sketch

instances. Moreover, Sketchovsky must be considered because resource usage varies due to our

cross-sketch optimizations for different sets of sketch instances. Given these challenges and po-

tential benefits, finding an optimal set of sketch instances given a set of queries is an interesting

and promising direction for future work.

Optimization using compiler. Although our proposed per/cross-sketch optimizations are effec-

tive and easy to use by using API calls and auto-code composition, our scope is limited in the

CHAPTER 7. CONCLUSIONS 105

sense that developers should only rely on our APIs, and the auto-code composition is based on

sketch templates. Suppose developers can freely write programs for a single sketch or ensemble of

sketching algorithms, and the compiler can detect inefficiency automatically and apply optimiza-

tions internally. In that case, it will be more powerful and beneficial to developers. The challenge

of this approach is that compiler should be able to recognize all different ways to program sketch-

ing algorithms and apply appropriate optimizations.

Expanding generality on many dimensions. Sketch-based network telemetry can be much more

improved by expanding generality in many dimensions.

• Sketching algorithms. In SketchLib and Sketchovsky, we considered around 20 different

sketching algorithms. However, many more sketching algorithms exist and are being devel-

oped [69]. Thus, incorporating more sketching algorithms to show existing optimizations can

be applicable or developing new optimizations is a promising direction for future research.

Specifically, we can think of adding more sketch features. For example, Sketchovsky con-

sidered two counter array types; 2D counter arrays of single-level (SL) or 3D of multi-level

(ML). However, the scope can be easily expanded by adding more types, such as 4D counter

arrays [77, 92]. In this way, considering more sketch features to cover more sketching algo-

rithms is a promising direction for future work.

• Programmable switches. While we focused on the Tofino programmable switch, there are

other programmable switches as well (e.g., Broadcom Trident [10]). As those programmable

switches have different architecture and different programming languages [15], expanding

our approach of per/cross-sketch optimizations, control plane optimizations, auto-code com-

position and APIs to other programmable switches is an interesting direction.

• Other programmable network data plane devices. Besides programmable switches, the

recent trend of in-network computing made other network devices more programmable. Net-

work Interface Cards (NICs) with Network Processing Units (NPUs) have programmability

(a.k.a. smartNICs). Field Programmable Gate Arrays (FPGAs) can also support data plane

CHAPTER 7. CONCLUSIONS 106

programmability. A few sketching algorithms are optimized and deployed on these platforms,

but there is no effort to provide API and code composition for a set of various sketching al-

gorithms. Expanding our systems to these heterogeneous programmable network devices

seems promising. We posit that our per/cross sketch optimizations and the notion of APIs

and auto-code composition can be similarly applied to other hardware devices..

Network-wide deployment of sketching algorithms on heterogenous devices. We only looked

at deploying sketching algorithms on a single hardware device. However, network systems are

composed of many heterogeneous data plane devices with different network topologies. Given

this, how to distribute a set of sketch instances to heterogeneous network devices in network-

wide deployment is an open challenge. It is known that there are affinities between sketching

algorithms and hardware devices [18] (e.g., specific sketching algorithms are more efficient on

specific hardware devices). If specific sketch instances are running together on a single device,

it can be more efficient depending on the applicable conditions of cross-sketch optimizations.

Considering all these constraints make the problem more challenging.

Appendix A

SketchLib Appendix

A.1 Comparison of RMT resource mapper and Tofino compiler

To validate RMT resource mapper as a proxy for Tofino compiler, we conduct experiments to

compare resource allocation results of RMT resource mapper and the Tofino compiler. We pick

five different sketches (UnivMon, R-HHH, PCSA, HLL, and MRB). We vary one parameter of

sketches while fixing other parameters and analyze the resource allocation results. We focus on

five different resource types; pipeline stages, hash calls, SALU, SRAM, and TCAM.

Fig. A.1–Fig. A.5 illustrate the results. Note that all of the resource usages are normalized. We

can see that for hash calls, SALU, SRAM, and TCAM usages are identical between RMT resource

mapper and the Tofino compiler. For pipeline stages, results are the same for PCSA, HLL, and

MRB. However, RMT resource mapper finds mapping which uses fewer pipeline stages than the

Tofino compiler for UnivMon and R-HHH. RMT resource mapper minimizes stages while the

Tofino compiler finds more sparse mapping (e.g., mapping a small number of tables per stage).

We validate both of the mappings from RMT resource mapper and Tofino compiler are valid. We

confirm with the vendor that the Tofino compiler uses complex heuristics and the cost function of

power budget and compilation time, which are different from that of RMT resource mapper and

can introduce the gap. Our extensions to the RMT resource mapper is available at [17].

107

APPENDIX A. SKETCHLIB APPENDIX 108

1 2 3 4 5 6 7 8
Number of Levels

1

2

3

4

P
ip

el
in

e
st

ag
e

UnivMon R=3

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

1

2

3

P
ip

el
in

e
st

ag
e

UnivMon R=5

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

4

P
ip

el
in

e
st

ag
e

PCSA

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

1

2

3

4

P
ip

el
in

e
st

ag
e

HLL

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

1

2

3

P
ip

el
in

e
st

ag
e

RHHH R=3

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

1

2

3

P
ip

el
in

e
st

ag
e

RHHH R=5

RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

2

P
ip

el
in

e
st

ag
e

MRB

RMT Resource Mapper

Tofino Compiler

Figure A.1: RMT resource mapper vs. Tofino compiler: pipeline stages

1 2 3 4 5 6 7 8
Number of Levels

2

4

6

8

H
as

h
C

al
ls

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

2

4

6

8

H
as

h
C

al
ls

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

1.5

2.0

2.5

H
as

h
C

al
ls

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.5

1.0

H
as

h
C

al
ls

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

2

4

6

8

H
as

h
C

al
ls

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

2

4

6

8

H
as

h
C

al
ls

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.5

1.0

1.5

2.0

H
as

h
C

al
ls

MRB
RMT Resource Mapper

Tofino Compiler

Figure A.2: RMT resource mapper vs. Tofino compiler: Hash Call

1 2 3 4 5 6 7 8
Number of Levels

1

2

3

S
A

L
U

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

1

2

3

S
A

L
U

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

0.5

1.0

1.5

S
A

L
U

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.135

0.140

0.145

0.150

S
A

L
U

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

1

2

3

4

S
A

L
U

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

1

2

3

4

S
A

L
U

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.25

0.50

0.75

1.00

S
A

L
U

MRB
RMT Resource Mapper

Tofino Compiler

Figure A.3: RMT resource mapper vs. Tofino compiler: SALU

APPENDIX A. SKETCHLIB APPENDIX 109

1 2 3 4 5 6 7 8
Number of Levels

2

4

6

S
R

A
M

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

2

4

6

S
R

A
M

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 101112
Number of bitmaps

1

2

3

S
R

A
M

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

0.27

0.28

0.29

0.30

S
R

A
M

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

2

4

6

8

S
R

A
M

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

2

4

6

8

S
R

A
M

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

0.5

1.0

1.5

2.0

S
R

A
M

MRB
RMT Resource Mapper

Tofino Compiler

Figure A.4: RMT resource mapper vs. Tofino compiler: SRAM

1 2 3 4 5 6 7 8
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

UnivMon R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

UnivMon R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9101112
Number of bitmaps

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

PCSA
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
hash bit length to get consecutive 1s

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

HLL
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8 9 10
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

RHHH R=3
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6
Number of Levels

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

RHHH R=5
RMT Resource Mapper

Tofino Compiler

1 2 3 4 5 6 7 8
Number of bitmaps

−0.050

−0.025

0.000

0.025

0.050

T
C

A
M

MRB
RMT Resource Mapper

Tofino Compiler

Figure A.5: RMT resource mapper vs. Tofino compiler: TCAM

Appendix B

Sketchovsky Appendix

B.1 Supplement to Background

B.1.1 Counter Update Type

We introduce five counter update types as in Alg. 2.

1. BITMAP is just a bitmap.

2. COUNTER receives index and size for the counter update, then increase the counter depending

on packet counts or packet bytes.

3. SIGNCOUNTER receives one additional input of 1-bit hash result. Depending on this hash

value, it will either increase or decrease the counter. The 1-bit hash value is computed by using

flowkey.

4. HLL type can be used for loglog-variant sketches [41, 47]. It receives index and value as inputs

and updates the counter if it is less than the value. Value can be computed by a function ρ(hash)

where hash ∈ {0,1}32, ρ(hash) is the position of the leftmost 1-bit (e.g., ρ(0001 . . .) = 4) and

hash is computed using flowkey [47]. This ρ function can be implemented efficiently by using

TCAM in the switch data plane [17].

5. PCSA receives index and bitmask as inputs. Then it uses the bit-OR operation to update the

counter using the bitmask. Bitmask value can be computed by shift operation (1 << ρ(hash)).

110

APPENDIX B. SKETCHOVSKY APPENDIX 111

Algorithm 2 Five Counter Update Types

1: function BITMAP(index)
2: A[index] = 1
3: function COUNTER(index, size)
4: A[index] = A[index] + size

5: function SIGNCOUNTER(hash, index, size)
6: if hash == 0 then
7: A[index] = A[index] + size
8: else if hash == 1 then
9: A[index] = A[index] - size

10: function HLL(index, value)
11: if A[index] < value then
12: A[index] = value

13: function PCSA(index, bitmask)
14: A[index] = A[index] | bitmask

B.2 Supplement to Optimizations

B.2.1 SRAM reduction of SALU-Reuse (OCtr1)

SALU-Reuse (OCtr1) reduces not only SALUs but also SRAM. Suppose S = {si}ni=1 is a set of

sketch instances and C = {(ri,wi)}ni=1 represent that si has ri number of counter arrays with width

wi. W represents row and width of counter arrays for reuse after applying OCtr1 .

W = {w∗
j }

maxi(ri)
j=1 where w∗

j = max
i

{wi∣ri ≥ j} (B.1)

Then, SRAM usage changes from ∑n
i=1 riwi to ∑maxi(ri)

j=1 w∗
j . OCtr1 will always maintain or reduce

SRAM usage because ∑n
i=1 riwi −∑maxi(ri)

j=1 w∗
j ≥ 0. Suppose comp(x, y) ∈ {0,1} where x, y ∈ N.

If x ≤ y → comp(x, y) = 1, otherwise → comp(x, y) = 0.

n

∑
i=1

riwi −
maxi(ri)
∑
j=1

w∗
j =

maxi(ri)
∑
j=1

((
n

∑
i=1

wi ⋅ comp(ri, j)) −w∗
j)

(
n

∑
i=1

wi ⋅ comp(ri, j)) −w∗
j ≥ 0 for 1 ≤ j ≤maxi(ri) due to (B.1)

Thus,
n

∑
i=1

riwi −
maxi(ri)
∑
j=1

w∗
j ≥ 0

APPENDIX B. SKETCHOVSKY APPENDIX 112

B.3 Supplement to Evaluation

B.3.1 Eleven Sketch Algorithms for Evaluation

We use eleven sketching algorithms for our evaluation as in Table B.1. They have different sketch

features. Counter array type can be single-level (SL) or multi-level (ML). We also show a pool of

candidate configurable parameters per each sketching algorithm in Table B.1.

Sketch Algorithms Sketch Features Configurable Parameters Candidates

Statistic Name
Counter
Array

Counter
Update

Heavy
Flowkey Flowkey Flowsize Epoch Row Width Level

Membership BF [27] SL BITMAP N

{(srcIP),
(dstIP),

(srcIP, dstIP),
(srcIP, srcPort),
(dstIP, dstPort),

(4-tuple),
(5-tuple)}

{counts}

{10s,
20s,
30s,
40s}

{1}

{128K, 256K,
512K} -

Cardinality

LC [96] SL BITMAP N
MRB [43] ML BITMAP N {16K, 32K} {8, 16}
PCSA [46] SL PCSA N

{4K, 8K,
16K} -

HLL [47] SL HLL N

HH/HC
CS [32] SL SIGNCOUNTER Y {counts,

bytes}
{1, 2,
3, 4,
5}

CM [37] SL COUNTER Y
KARY [65] SL COUNTER Y

Entropy ENT [67] SL COUNTER N
{counts}General UM [71] ML SIGNCOUNTER Y {3,4,5} {2K} {16}

FSD MRAC [66] ML COUNTER N {1} {8, 16}

Table B.1: Eleven sketch algorithms with sketch features and possible configurable parameters. (4-tuple) = (srcIP, dstIP,
srcPort, dstPort). (5-tuple) = (srcIP, dstIP, srcPort, dstPort, proto).

B.3.2 Four Ensembles for Accuracy Evaluation

Table B.2 - Table B.5 shows four picked ensembles for four ensemble types. All five optimizations

are found in four picked ensembles.

Ensemble Type 1.

● Hash-Reuse (OHash1): none

● Hash-XOR (OHash2): none

● SALU-Reuse (OCtr1): none

● SALU-Merge (OCtr2): none

● HFS-Reuse (OKey): {s1, s2, s3, s4, s5, s6}

Ensemble Type 2.

● Hash-Reuse (OHash1): {s3, s4, s6, s10}

APPENDIX B. SKETCHOVSKY APPENDIX 113

SI Base
SA (*)

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 CM (srcIP) counts 40s (1, 16K)
s2 CM (srcIP) bytes 10s (5, 4K)
s3 CM (srcIP, dstIP) bytes 30s (2, 16K)
s4 CM (srcIP, srcPort) bytes 30s (5, 8K)
s5 CM (dstIP, dstPort) bytes 20s (2, 4K)
s6 CM (5-tuple) counts 40s (5, 8K)

Table B.2: Ensemble Type 1. Same Sketch Algorithm

● Hash-XOR (OHash2): none

● SALU-Reuse (OCtr1): {s8, s9}

● SALU-Merge (OCtr2): {{s1},{s2}}, {s7,{s8, s9}}

● HFS-Reuse (OKey): {s2, s8, s9}

Ensemble Type 3.

● Hash-Reuse (OHash1): {s3, s4}

● Hash-XOR (OHash2): none

● SALU-Reuse (OCtr1): {s8, s9}

● SALU-Merge (OCtr2): {{s3},{s4}}, {{s6},{s7}}

● HFS-Reuse (OKey): {s4, s5}

Ensemble Type 4.

● Hash-Reuse (OHash1): none

● Hash-XOR (OHash2):{{s1},{s2},{s3}}, {{s4},{s5},{s9}}

● SALU-Reuse (OCtr1): none

● SALU-Merge (OCtr2): {{s7},{s8}}

● HFS-Reuse (OKey): none

APPENDIX B. SKETCHOVSKY APPENDIX 114

SI Base
SA

Configurable Parameters
Flowkey(*) Flowsize Epoch Resource

s1 ENT (dstIP, dstPort) counts 10s (3, 16K)
s2 CS (dstIP, dstPort) counts 10s (3, 16K)
s3 MRB (dstIP, dstPort) - 20s (1, 16K, 8)
s4 MRAC (dstIP, dstPort) counts 20s (1, 2K, 8)
s5 BF (dstIP, dstPort) - 30s (3, 128K)
s6 MRB (dstIP, dstPort) - 30s (1, 16K, 16)
s7 ENT (dstIP, dstPort) counts 30s (4, 4K)
s8 CM (dstIP, dstPort) bytes 30s (3, 4K)
s9 KARY (dstIP, dstPort) bytes 30s (1, 4K)
s10 MRAC (dstIP, dstPort) counts 40s (1, 2K, 8)

Table B.3: Ensemble Type 2. Same Flowkey

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch(*) Resource

s1 HLL (srcIP) - 30s (1, 16K)
s2 HLL (dstIP) - 30s (1, 4K)
s3 MRAC (srcIP, dstIP) counts 30s (1, 2K, 8)
s4 UM (srcIP, dstIP) counts 30s (3, 2K, 16)
s5 UM (srcIP, srcPort) counts 30s (4, 2K, 16)
s6 PCSA (dstIP, dstPort) - 30s (1, 8K)
s7 ENT (dstIP, dstPort) counts 30s (2, 16K)
s8 BF (4-tuple) - 30s (3, 128K)
s9 LC (4-tuple) - 30s (1, 128K)
s10 ENT (5-tuple) counts 30s (5, 4K)

Table B.4: Ensemble Type 3. Same Epoch

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 MRAC (srcIP) counts 20s (1, 2K, 16)
s2 MRB (dstIP) - 30s (1, 16K, 8)
s3 MRB (srcIP, dstIP) - 20s (1, 32K, 8)
s4 HLL (srcIP, srcPort) - 10s (1, 4K)
s5 PCSA (dstIP, dstPort) - 20s (1, 16K)
s6 ENT (dstIP, dstPort) counts 30s (3, 8K)
s7 ENT (4-tuple) counts 30s (5, 4K)
s8 CS (4-tuple) counts 30s (3, 8K)
s9 PCSA (4-tuple) - 40s (1, 16K)
s10 HLL (5-tuple) - 30s (1, 8K)

Table B.5: Ensemble Type 4. Random

Bibliography

[1] The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/data/
passive/passive_dataset.xml. 21, 22, 37, 48, 51, 68, 88, 96

[2] The U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense Competition (MAC-
CDC). https://www.netresec.com/?page=MACCDC. 96

[3] Marvell LiquidIO SmartNICs. https://www.marvell.com/products/
ethernet-adapters-and-controllers.html. 44

[4] FCM-sketch source code. https://github.com/fcm-project/fcm_p4. 42

[5] Mellanox DPU. https://www.nvidia.com/en-us/networking/products/
data-processing-unit/. 100

[6] Netronome Agilio SmartNICs. https://www.netronome.com/products/nfe/.
44, 100

[7] Open Sourced P4All. https://github.com/mhogan26/P4All. 52

[8] tcpreplay. https://tcpreplay.appneta.com/wiki/tcpreplay-man.html.
87

[9] Barefoot Tofino. https://barefootnetworks.com/products/
brief-tofino/. 4, 12, 18, 44, 85, 86

[10] Broadcom Trident 3. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56870-series/, .
12, 105

[11] Broadcom Trident 4. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56880-series,
. 85

[12] Barefoot P4 Studio. https://www.barefootnetworks.com/products/
brief-p4-studio/. 87

[13] Xilinx FPGA. https://www.xilinx.com/products/silicon-devices/
fpga.html. 100

[14] P414 Language Specification. https://p4.org/p4-spec/p4-14/v1.0.5/tex/
p4.pdf, 2018. 22

[15] NPL Specifications . https://nplang.org/npl/specifications/, 2020. 105

115

https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://www.netresec.com/?page=MACCDC
https://www.marvell.com/products/ethernet-adapters-and-controllers.html
https://www.marvell.com/products/ethernet-adapters-and-controllers.html
https://github.com/fcm-project/fcm_p4
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.netronome.com/products/nfe/
https://github.com/mhogan26/P4All
https://tcpreplay.appneta.com/wiki/tcpreplay-man.html
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://nplang.org/npl/specifications/

BIBLIOGRAPHY 116

[16] Modular switch programming under resource constraints. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), Renton, WA, April 2022.
USENIX Association. URL https://www.usenix.org/conference/nsdi22/
presentation/hogan. 47, 50, 51, 52

[17] SketchLib: Enabling efficient sketch-based monitoring on programmable switches. In
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22),
Renton, WA, April 2022. USENIX Association. URL https://www.usenix.org/
conference/nsdi22/presentation/namkung. 34, 37, 46, 47, 50, 51, 76, 107,
110

[18] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. {HeteroSketch}: Coordinating
network-wide monitoring in heterogeneous and dynamic networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 22), pages 719–741, 2022.
46, 106

[19] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin
Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, et al.
Conga: Distributed congestion-aware load balancing for datacenters. In Proceedings of the
2014 ACM Conference on SIGCOMM, pages 503–514, 2014. 1, 46

[20] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Designing heavy-hitter
detection algorithms for programmable switches. IEEE/ACM Transactions on Networking,
28(3):1172–1185, 2020. 46

[21] Eric Temple Bell. Exponential polynomials. Annals of Mathematics, pages 258–277, 1934.
61

[22] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and Erez Waisbard. Con-
stant time updates in hierarchical heavy hitters. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pages 127–140, 2017. 2, 3, 11, 14,
16, 19, 20, 22, 27, 28, 31, 33, 34, 38, 47, 50, 51, 85, 89

[23] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Efficient measurement on
programmable switches using probabilistic recirculation. In 2018 IEEE 26th International
Conference on Network Protocols (ICNP), pages 313–323. IEEE, 2018. 24, 27

[24] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Minian Yu, and
Michael Mitzenmacher. Pint: Probabilistic in-band network telemetry. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication, pages
662–680, 2020. 14, 15, 100

[25] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic characteristics of
data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 267–280, 2010. 96

[26] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine grained
traffic engineering for data centers. In Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, pages 1–12, 2011. 1, 46

https://www.usenix.org/conference/nsdi22/presentation/hogan
https://www.usenix.org/conference/nsdi22/presentation/hogan
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/namkung

BIBLIOGRAPHY 117

[27] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Vargh-
ese. An improved construction for counting bloom filters. In European Symposium on
Algorithms, pages 684–695. Springer, 2006. 2, 48, 66, 112

[28] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard,
Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013. 1, 4, 5, 12, 44

[29] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Program-
ming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 2014.
6, 19, 44, 87

[30] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Proc. of STOC,
2010. 28, 29

[31] Valerio Bruschi, Ran Ben Basat, Zaoxing Liu, Gianni Antichi, Giuseppe Bianchi, and
Michael Mitzenmacher. Discovering the heavy hitters with disaggregated sketches. In Pro-
ceedings of the 16th International Conference on emerging Networking EXperiments and
Technologies, pages 536–537, 2020. 99

[32] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002. 2, 3, 11, 19, 20, 24, 27, 28, 34, 38, 48, 66, 85, 86, 87, 93, 96, 99,
112

[33] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jennifer Rexford.
Measuring tcp round-trip time in the data plane. In Proc. of SIGCOMM SPIN Workshop,
2020. 100

[34] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beaucoup:
Answering many network traffic queries, one memory update at a time. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication, pages
226–239, 2020. 27, 47, 49, 50, 51, 85

[35] B. Claise. Cisco systems NetFlow services export version 9. RFC 3954. URL https:
//tools.ietf.org/html/rfc3954. 2, 14, 15

[36] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data
streams. The VLDB Journal, 19(1):3–20, 2010. 17

[37] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005. 2, 3, 11, 19, 27,
36, 46, 48, 66, 85, 86, 87, 93, 96, 99, 112

[38] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivastava.
Finding hierarchical heavy hitters in data streams. In Proceedings 2003 VLDB Conference,
pages 464–475. Elsevier, 2003. 11, 27, 31

https://tools.ietf.org/html/rfc3954
https://tools.ietf.org/html/rfc3954

BIBLIOGRAPHY 118

[39] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman, Hakim Weather-
spoon, Marco Canini, Fernando Pedone, and Robert Soulé. P4xos: Consensus as a network
service. IEEE/ACM Transactions on Networking, 28(4):1726–1738, 2020. 2

[40] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow distributions from sam-
pled flow statistics. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 325–336, 2003. 1, 16

[41] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In European
Symposium on Algorithms, pages 605–617. Springer, 2003. 11, 27, 110

[42] Cristian Estan and George Varghese. New directions in traffic measurement and accounting.
In Proceedings of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 323–336, 2002. 1, 16

[43] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active
flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 153–166, 2003. 2, 4, 11, 19, 20, 27, 28, 30, 31, 33, 38, 48, 66, 85, 86,
87, 96, 112

[44] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scalable wide-
area web cache sharing protocol. IEEE/ACM transactions on networking, 8(3):281–293,
2000. 85, 86, 93

[45] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of computer and system sciences, 31(2):182–209, 1985. 19, 28

[46] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of computer and system sciences, 31(2):182–209, 1985. 2, 4, 11, 20, 27,
28, 30, 31, 33, 38, 48, 66, 112

[47] Philippe Flajolet, ric Fusy, Olivier Gandouet, and et al. Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm. In AOFA, 2007. 2, 3, 11, 20, 27, 28, 30, 38,
46, 48, 66, 86, 87, 96, 99, 110, 112

[48] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian, Chen
Sun, Dennis Cai, Ming Zhang, and Minlan Yu. Lyra: A cross-platform language and com-
piler for data plane programming on heterogeneous asics. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication, pages 435–450,
2020. 47, 50

[49] Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya Raghunathan, Aatish Kishan Varma,
Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. Switch
code generation using program synthesis. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 44–61, 2020. 47, 50

[50] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. Anomaly-based network intrusion detection: Techniques, systems and challenges.
computers & security, 28(1-2):18–28, 2009. 1, 46

BIBLIOGRAPHY 119

[51] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data plane perfor-
mance diagnosis of tcp. In Proceedings of the Symposium on SDN Research, pages 61–74,
2017. 45, 100

[52] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and Walter
Willinger. Sonata: Query-driven streaming network telemetry. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages 357–371,
2018. x, 1, 14, 15, 45, 48, 49, 100

[53] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick McK-
eown. I know what your packet did last hop: Using packet histories to troubleshoot net-
works. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 71–85, 2014. 14

[54] Hazar Harmouch and Felix Naumann. Cardinality estimation: An experimental survey.
Proceedings of the VLDB Endowment, 11(4):499–512, 2017. 17

[55] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-wide heavy hitter
detection with commodity switches. In Proceedings of the Symposium on SDN Research,
pages 1–7, 2018. 45, 100

[56] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti, Stefano Vis-
sicchio, and Laurent Vanbever. Blink: Fast connectivity recovery entirely in the data plane.
In Proc. of NSDI, 2019. 100

[57] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong Zhang.
Sketchvisor: Robust network measurement for software packet processing. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication, pages 113–
126, 2017. 14, 45

[58] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: Relieving user burdens in
approximate measurement with automated statistical inference. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages 576–590,
2018. 2, 3, 11, 14, 16, 24, 27, 32, 85, 86, 93

[59] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon
Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast in-network caching.
In Proc. of ACM SOSP, 2017. 2, 23, 24, 25, 33

[60] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling packet programs
to reconfigurable switches. In 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15), pages 103–115, 2015. 21, 44

[61] Georgios P Katsikas, Tom Barbette, Marco Chiesa, Dejan Kostic, and Gerald Q Maguire Jr.
What you need to know about (smart) network interface cards. In PAM, 2021. 100

[62] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Confluo: Distributed monitoring and
diagnosis stack for high-speed networks. In Proc. of USENIX NSDI, 2019. 100

BIBLIOGRAPHY 120

[63] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, and
Lawrence J Wobker. In-band network telemetry via programmable dataplanes. In ACM
SIGCOMM Demo Session, 2015. 100

[64] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: building a
better bloom filter. In European Symposium on Algorithms, pages 456–467. Springer, 2006.
19, 28, 56

[65] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based
change detection: methods, evaluation, and applications. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pages 234–247, 2003. 2, 3, 11, 19, 27, 48,
66, 86, 93, 99, 112

[66] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. Data streaming algorithms for ef-
ficient and accurate estimation of flow size distribution. ACM SIGMETRICS Performance
Evaluation Review, 32(1):177–188, 2004. 2, 4, 11, 19, 20, 27, 28, 30, 31, 33, 38, 48, 66, 67,
112

[67] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data streaming al-
gorithms for estimating entropy of network traffic. ACM SIGMETRICS Performance Eval-
uation Review, 34(1):145–156, 2006. 2, 11, 27, 48, 66, 112

[68] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports. Just say
{NO} to paxos overhead: Replacing consensus with network ordering. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 467–483,
2016. 2

[69] Shangsen Li, Lailong Luo, Deke Guo, Qianzhen Zhang, and Pengtao Fu. A survey of
sketches in traffic measurement: Design, optimization, application and implementation.
arXiv preprint arXiv:2012.07214, 2020. 105

[70] Yifan Li, Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and Hongqiang Harry Liu. Cetus:
Releasing p4 programmers from the chore of trial and error compiling. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages 371–385,
2022. 47, 50

[71] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman.
One sketch to rule them all: Rethinking network flow monitoring with univmon. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference, pages 101–114, 2016. 2, 3, 11, 14, 16,
18, 19, 20, 22, 24, 27, 28, 33, 34, 38, 46, 47, 48, 50, 51, 66, 85, 86, 87, 89, 96, 99, 112

[72] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir Braver-
man, Xin Jin, and Ion Stoica. Distcache: Provable load balancing for large-scale storage
systems with distributed caching. In Proc. of USENIX FAST, 2019. 24, 33

[73] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Fried-
man, and Vyas Sekar. Nitrosketch: Robust and general sketch-based monitoring in software
switches. In Proceedings of the ACM Special Interest Group on Data Communication, pages
334–350. 2019. 2, 14, 16, 19, 31, 45

BIBLIOGRAPHY 121

[74] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer Rexford.
Memory-efficient performance monitoring on programmable switches with lean algorithms.
In Proc. of APoCS. SIAM, 2020. 100

[75] Zaoxing Liu, Hun Namkung, Anup Agarwal, Antonis Manousis, Peter Steenkiste, Srini-
vasan Seshan, and Vyas Sekar. Sketchy with a chance of adoption: Can sketch-based
telemetry be ready for prime time? In 2021 IEEE 7th International Conference on Net-
work Softwarization (NetSoft), pages 9–16. IEEE, 2021. 72

[76] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim,
Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A {High-
Performance}{Switch-Native} approach for detecting and mitigating volumetric {DDoS}
attacks with programmable switches. In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 3829–3846, 2021. 49

[77] Antonis Manousis, Zhuo Cheng, Ran Ben Basat, Zaoxing Liu, and Vyas Sekar. Enabling ef-
ficient and general subpopulation analytics in multidimensional data streams. arXiv preprint
arXiv:2208.04927, 2022. 105

[78] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of fre-
quent and top-k elements in data streams. In International Conference on Database Theory,
pages 398–412. Springer, 2005. 2

[79] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad: Mak-
ing stateful layer-4 load balancing fast and cheap using switching asics. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication, pages 15–28,
2017. 1, 2, 5, 23, 46

[80] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Scream: Sketch re-
source allocation for software-defined measurement. In Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies, pages 1–13, 2015. 47, 50,
51

[81] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now
Publishers Inc, 2005. 93

[82] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, and Peter Steenkiste. Telemetry
retrieval inaccuracy in programmable switches: Analysis and recommendations. In Pro-
ceedings of the Symposium on SDN Research, 2021. 65

[83] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun, Mo-
hammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. Language-directed hard-
ware design for network performance monitoring. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pages 85–98, 2017. 1, 14, 15, 45, 49

[84] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui Zhang. An empirical
evaluation of entropy-based traffic anomaly detection. In ACM IMC, 2008. 99

[85] George Nychis, Vyas Sekar, David G Andersen, Hyong Kim, and Hui Zhang. An empiri-
cal evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 151–156, 2008. 86, 93

BIBLIOGRAPHY 122

[86] George Nychis, Vyas Sekar, David G Andersen, Hyong Kim, and Hui Zhang. An empiri-
cal evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 151–156, 2008. 99

[87] Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay Vazirani. Fast
monitoring of traffic subpopulations. In Proceedings of the 8th ACM SIGCOMM conference
on Internet measurement, pages 257–270, 2008. 1, 16

[88] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukrishnan, and
Jennifer Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings of the
Symposium on SDN Research, pages 164–176, 2017. 1, 2, 24, 27, 44, 46, 99

[89] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and Mun Choon
Chan. Fcm-sketch: generic network measurements with data plane support. In Proceedings
of the 16th International Conference on emerging Networking EXperiments and Technolo-
gies, pages 78–92, 2020. 11, 14, 16, 27, 42

[90] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. Composing
dataplane programs with µp4. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 329–343, 2020. 47, 50

[91] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network monitoring
and debugging with switchpointer. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pages 453–456, 2018. 45

[92] Lu Tang, Qun Huang, and Patrick PC Lee. Spreadsketch: Toward invertible and network-
wide detection of superspreaders. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 1608–1617. IEEE, 2020. 11, 27, 105

[93] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM Journal on Computing, 41(2):293–
331, 2012. 56

[94] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford. Programmable in-
network obfuscation of dns traffic (work-in-progress). 100

[95] Mea Wang, Baochun Li, and Zongpeng Li. sflow: Towards resource-efficient and agile
service federation in service overlay networks. In Proc. of IEEE ICDCS, 2004. 14, 15

[96] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. A linear-time proba-
bilistic counting algorithm for database applications. ACM Transactions on Database Sys-
tems (TODS), 15(2):208–229, 1990. 2, 43, 48, 66, 112

[97] Qingjun Xiao, Zhiying Tang, and Shigang Chen. Universal online sketch for tracking heavy
hitters and estimating moments of data streams. In IEEE INFOCOM, 2020. 19, 28, 31, 45

[98] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine learning? toward in-
network classification. In Proceedings of the 18th ACM workshop on hot topics in networks,
pages 25–33, 2019. 2

BIBLIOGRAPHY 123

[99] Mingran Yang, Junbo Zhang, Akshay Gadre, Zaoxing Liu, Swarun Kumar, and Vyas Sekar.
Joltik: enabling energy-efficient" future-proof" analytics on low-power wide-area networks.
In Proceedings of the 26th Annual International Conference on Mobile Computing and Net-
working, pages 1–14, 2020. 19, 31, 45

[100] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaom-
ing Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide measurements. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018. 2, 3, 14, 16, 27, 28, 42, 85, 99

[101] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng, and Lihua
Yuan. dshark: a general, easy to program and scalable framework for analyzing in-network
packet traces. In 16th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19), pages 207–220, 2019. 1, 14, 46

[102] Minlan Yu. Network telemetry: towards a top-down approach. ACM SIGCOMM Computer
Communication Review, 49(1):11–17, 2019. 1, 49, 72

[103] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with opens-
ketch. In Proc. of USENIX NSDI, 2013. 17, 19, 30, 99

[104] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin. Net-
lock: Fast, centralized lock management using programmable switches. In Proceedings of
ACM SIGCOMM, pages 126–138, 2020. 2

[105] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin Hu, Guofei
Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. Poseidon: Mitigating volumetric ddos
attacks with programmable switches. In Proceedings of NDSS, 2020. 49

[106] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng Liu,
Ruwen Zhang, and Junchen Jiang. Cocosketch: high-performance sketch-based measure-
ment over arbitrary partial key query. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 207–222, 2021. 3, 14, 16, 46, 47, 49, 50, 51

[107] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian Zheng,
Ruixin Wang, Hanbo Wu, Yi Wang, et al. Lightguardian: A full-visibility, lightweight, in-
band telemetry system using sketchlets. In 18th USENIX Symposium on Networked Systems
Design and Implementation, 2021. 99

[108] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang, Wanchun
Dou, and Guihai Chen. Flymon: enabling on-the-fly task reconfiguration for network mea-
surement. In Proceedings of the ACM SIGCOMM 2022 Conference, pages 486–502, 2022.
50, 51

[109] Peng Zheng, Theophilus Benson, and Chengchen Hu. P4visor: Lightweight virtualization
and composition primitives for building and testing modular programs. In Proceedings of
the 14th International Conference on Emerging Networking EXperiments and Technologies,
pages 98–111, 2018. 47, 50

BIBLIOGRAPHY 124

[110] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, Yangyang Wang, Mingwei Xu, and
Jianping Wu. Newton: intent-driven network traffic monitoring. In Proceedings of the 16th
International Conference on emerging Networking EXperiments and Technologies, pages
295–308, 2020. 5, 14, 15, 49

[111] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan, Dave
Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry in large data-
center networks. In Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015. 14

	Contents
	List of Tables
	List of Figures
	Introduction
	Sketching algorithms are promising for network telemetry
	Programmable switches are high-performant and flexible
	Sketching algorithms on programmable switches
	Challenges of running sketches on programmable switches
	Thesis overview
	Scope of the thesis
	Outline

	Related Work: A Taxonomy of Network Telemetry
	Packet-level telemetry
	Expressive query language
	Sampling-based approach
	Sketching algorithms on software switch
	Single sketch instance on programmable switch
	Multiple sketch instances on programmable switch (our approach)

	SketchLib: Optimizing A Single Sketch Instance on Programmable Switches
	Motivation: Bottleneck Analysis
	Optimizations
	SketchLib API
	Evaluation
	Related Work
	Summary

	Sketchovsky: Optimizing Ensembles of Sketch Instances on Programmable Switches
	Motivation
	Sketchovsky Overview
	Optimization Building Blocks
	Strategy Finder
	Implementation
	Evaluation
	Discussion
	Summary

	Auto-code Composition Framework: Automatically Generates Optimized Sketch Data Plane Code
	Step 1. Create Sketch P4 Codes
	Step 2. Code Concatenation
	Step 3. Code Rewrite using Strategy

	CounterFetchLib: Optimizing Sketch Control Plane on Programmable Switches for Accurate Measurement Results
	Motivation
	Problem Diagnosis
	Building Blocks and Solution Guidelines
	API calls
	Evaluation
	Related work
	Summary

	Conclusions
	Summary of Contributions
	Lessons Learned
	Future Work

	SketchLib Appendix
	Comparison of RMT resource mapper and Tofino compiler

	Sketchovsky Appendix
	Supplement to Background
	Supplement to Optimizations
	Supplement to Evaluation

	Bibliography

